THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz
A low-noise uncooled receiver was designed and constructed for measurements of the atmospheric ozone spectral line at 142.2 GHz. The design has shown the double-sideband (DSB) receiver noise temperature of about 350 K within 130 to 150 GHz. Critical construction features of the basic units (mixer, i...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Видавничий дім «Академперіодика»
2015
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1221 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1221 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2017-05-12T15:08:35Z |
| collection |
OJS |
| language |
Russian |
| topic |
mm-waves pseudomorphic high electron-mobility transistor (PHEMT) mixer atmospheric gases |
| spellingShingle |
mm-waves pseudomorphic high electron-mobility transistor (PHEMT) mixer atmospheric gases Piddyachiy, V. I. Korolev, O. M. Myshenko, V. V. Shulga, V. M. THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| topic_facet |
mm-waves pseudomorphic high electron-mobility transistor (PHEMT) mixer atmospheric gases миллиметровые волны псевдоморфный транзистор с высокой подвижностью электронов смеситель атмосферные газы міліметрові хвилі псевдоморфний транзистор з високою рухливістю електронів змішувач атмосферні гази |
| format |
Article |
| author |
Piddyachiy, V. I. Korolev, O. M. Myshenko, V. V. Shulga, V. M. |
| author_facet |
Piddyachiy, V. I. Korolev, O. M. Myshenko, V. V. Shulga, V. M. |
| author_sort |
Piddyachiy, V. I. |
| title |
THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| title_short |
THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| title_full |
THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| title_fullStr |
THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| title_full_unstemmed |
THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz |
| title_sort |
2-mm range receiving module for observations of atmospheric ozone emission line at 142.2 ghz |
| title_alt |
ПРИЕМНЫЙ МОДУЛЬ 2–ММ ДИАПАЗОНА ДЛЯ НАБЛЮДЕНИЙ ЛИНИИ ИЗЛУЧЕНИЯ АТМОСФЕРНОГО ОЗОНА НА ЧАСТОТЕ 142.2 ГГЦ ПРИЙМАЛЬНИЙ МОДУЛЬ 2-ММ ДІАПАЗОНУ ДЛЯ СПОСТЕРЕЖЕНЬ ЛІНІЇ ВИПРОМІНЮВАННЯ АТМОСФЕРНОГО ОЗОНУ НА ЧАСТОТІ 142.2 ГГц |
| description |
A low-noise uncooled receiver was designed and constructed for measurements of the atmospheric ozone spectral line at 142.2 GHz. The design has shown the double-sideband (DSB) receiver noise temperature of about 350 K within 130 to 150 GHz. Critical construction features of the basic units (mixer, intermediate frequency amplifier, and diplexer) are described. Noise characteristics showed by the receiver are the best in the class of uncooled heterodyne receivers of the 2-mm wavelengths.Key words: mm-waves, pseudomorphic high electron-mobility transistor (PHEMT), mixer, atmospheric gasesManuscript submitted 18.06.2015Radio phys. radio astron. 2015, 20(3): 261-268REFERENCES1. BEIG, G., KECKHUT, P., LOWE, R. P., ROBLE, R. G., MLYNCZAK, M. G., SCHEER, J., FOMICHEV, V. I., OFFERMANN, D., FRENCH, W. J. R., SHEPHERD, M. G., SEMENOV, A. I., REMSBERG, E. E., SHE, C. Y., LÜBKEN, F. J., BREMER, J., CLEMESHA, B. R., STEGMAN, J., SIGERNES, F. and FADNAVIS, S., 2003. Review of mesospheric temperature trends. Rev. Geophys. vol. 41, no. 4, pp. 1015–1055. DOI: https://doi.org/10.1029/2002RG000121 2. KOSTSOV, V. S. and TIMOFEYEV, YU. M., 2005. Mesospheric ozone according to data of satellite experiment CRISTA-1: 2. Spatial distribution and diurnal variations. Izvestia RAN. Fizika atmosfery i okeana. vol. 41, no. 2, pp. 72–83 (in Russian). 3. PARDO, J. R., CERNICHARO, J. and PAGANI, L., 1998. Ground-based spectroscopic observations of atmospheric ozone from 142 to 359 GHz in southern Europe. J. Geophys. Res. vol.103, no. D6, pp. 6189–6202. DOI: https://doi.org/10.1029/97JD03628 4. RÜFENACHT, R., KÄMPFER., N., and MURK, A., 2012. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech. vol. 5, no. 11, pp. 2647–2659. DOI: https://doi.org/10.5194/amt-5-2647-2012 5. BURROWS, S., MARTIN, C. and ROBERTS, E., 2007. High-latitude remote sensing of mesospheric wind speeds and carbon monoxide. J. Geophys. Res. vol. 112, no. D17, id. D17109. DOI: https://doi.org/10.1029/2006JD007993 6. PALM, M., HOFFMAN, C. G., GOLCHERT, S. H. W., and NORTHOLT, J., 2010. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3-measurements. Atmos. Meas. Tech. vol. 3, pp. 1533–1545. DOI: https://doi.org/10.5194/amt-3-1533-2010 7. FORKMAN, P., CHRISTENSEN, O. M., ERIKSSON, P., URBAN, J. and FUNKE, B., 2012. Six years of mesospheric CO estimated from ground-based frequencyswitched microwave radiometry at 57º N compared with satellite instruments. Atmos. Meas. Tech. vol. 5, pp. 2827–2841. DOI: https://doi.org/10.5194/amt-5-2827-2012 8. ROZANOV, S. B., LUKIN, A. N. and SOLOMONOV, S. V., 1998. Low-noise cooled planar Schottky diode receivers for ground-based spectral ozone measurements at 142 GHz. Int. J. Infrared Millimeter Waves. vol. 19, no. 2, pp. 195–222. DOI: https://doi.org/10.1023/A:1022567523647 9. PIDDYACHIY, V., KOROLEV, A. and SHULGA, V., 2005. Avery low-noise integrated 3mm-wave Schottky diode mixer and PHEMT IF amplifier. Int. J. Infrared Millimeter Waves. vol. 26, no. 10, pp. 1381–1388. DOI: https://doi.org/10.1007/s10762-005-8436-1 10. PIDDYACHIY, V., SHULGA, V., KOROLEV, A. and MYSHENKO, V.,2005. High doping density Schottky diodes in the 3mm wavelength cryogenic heterodyne receiver. Int. J. Infrared Millimeter Waves. vol. 26, no. 9, pp. 1307–1315. DOI: https://doi.org/10.1007/s10762-005-7605-6 11. FORKMAN, P., PIDDYACHIY, V., KOROLEV, A., MYSHENKO, V., MYSHENKO, A., and SHULGA, V., 2006. An uncooled very low noise Schottky diode receiver frontend for middle atmospheric ozone and carbon monoxides. Int. J. Infrared Millimeter Waves. vol. 27, no. 1, pp. 25–35. DOI: https://doi.org/10.1007/s10762-006-9061-3 12. PIDDYACHIY, V., SHULGA, V., MYSHENKO, V., KOROLEV, A., MYSHENKO, A., ANTYUFEYEV, A., POLADICH, A. and SHKODIN, V., 2010. 3-mm wave spectroradiometer for studies of atmospheric trace gases. Radiophys. Quantum Electron. vol. 53, no. 5,6, pp. 326–333. 13. ALDERT VAN DER ZIEL, 1970. Noise. Sources, characterization, measurement. Englewood Cliffts, N. J.: Prentis-Hall.14. KOROLEV, A. M. 2011. An intermediate frequency amplifier for a radio astronomy superheterodyne receiver. Instruments and Experimental Techniques. vol. 54, no. 1, pp. 81–83. 15. Korolev, A. M. and Shulga, V. M., 2011. Unsaturated Regime as Alternative Method to Provide Stability of Low-Noise Amplifier on High-Electron-Mobility Transistors. Radio Phys. Radio Astron. vol. 16, no. 4, pp. 433–439 (in Russian). 16. KOROLEV, A. M. and SHULGA, V. M., 2003. Ultra-Low-Noise Operation of Broadband Uncooled PHEMT Amplifier in Ultrahigh-Frequency Band. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 21–27 (in Russian). |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2015 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1221 |
| work_keys_str_mv |
AT piddyachiyvi the2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT korolevom the2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT myshenkovv the2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT shulgavm the2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT piddyachiyvi priemnyjmodulʹ2mmdiapazonadlânablûdenijliniiizlučeniâatmosfernogoozonanačastote1422ggc AT korolevom priemnyjmodulʹ2mmdiapazonadlânablûdenijliniiizlučeniâatmosfernogoozonanačastote1422ggc AT myshenkovv priemnyjmodulʹ2mmdiapazonadlânablûdenijliniiizlučeniâatmosfernogoozonanačastote1422ggc AT shulgavm priemnyjmodulʹ2mmdiapazonadlânablûdenijliniiizlučeniâatmosfernogoozonanačastote1422ggc AT piddyachiyvi prijmalʹnijmodulʹ2mmdíapazonudlâspostereženʹlíníívipromínûvannâatmosfernogoozonunačastotí1422ggc AT korolevom prijmalʹnijmodulʹ2mmdíapazonudlâspostereženʹlíníívipromínûvannâatmosfernogoozonunačastotí1422ggc AT myshenkovv prijmalʹnijmodulʹ2mmdíapazonudlâspostereženʹlíníívipromínûvannâatmosfernogoozonunačastotí1422ggc AT shulgavm prijmalʹnijmodulʹ2mmdíapazonudlâspostereženʹlíníívipromínûvannâatmosfernogoozonunačastotí1422ggc AT piddyachiyvi 2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT korolevom 2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT myshenkovv 2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz AT shulgavm 2mmrangereceivingmoduleforobservationsofatmosphericozoneemissionlineat1422ghz |
| first_indexed |
2025-12-02T15:35:59Z |
| last_indexed |
2025-12-02T15:35:59Z |
| _version_ |
1850763750270828544 |
| spelling |
rpra-journalorgua-article-12212017-05-12T15:08:35Z THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz ПРИЕМНЫЙ МОДУЛЬ 2–ММ ДИАПАЗОНА ДЛЯ НАБЛЮДЕНИЙ ЛИНИИ ИЗЛУЧЕНИЯ АТМОСФЕРНОГО ОЗОНА НА ЧАСТОТЕ 142.2 ГГЦ ПРИЙМАЛЬНИЙ МОДУЛЬ 2-ММ ДІАПАЗОНУ ДЛЯ СПОСТЕРЕЖЕНЬ ЛІНІЇ ВИПРОМІНЮВАННЯ АТМОСФЕРНОГО ОЗОНУ НА ЧАСТОТІ 142.2 ГГц Piddyachiy, V. I. Korolev, O. M. Myshenko, V. V. Shulga, V. M. mm-waves; pseudomorphic high electron-mobility transistor (PHEMT); mixer; atmospheric gases миллиметровые волны; псевдоморфный транзистор с высокой подвижностью электронов; смеситель; атмосферные газы міліметрові хвилі; псевдоморфний транзистор з високою рухливістю електронів; змішувач; атмосферні гази A low-noise uncooled receiver was designed and constructed for measurements of the atmospheric ozone spectral line at 142.2 GHz. The design has shown the double-sideband (DSB) receiver noise temperature of about 350 K within 130 to 150 GHz. Critical construction features of the basic units (mixer, intermediate frequency amplifier, and diplexer) are described. Noise characteristics showed by the receiver are the best in the class of uncooled heterodyne receivers of the 2-mm wavelengths.Key words: mm-waves, pseudomorphic high electron-mobility transistor (PHEMT), mixer, atmospheric gasesManuscript submitted 18.06.2015Radio phys. radio astron. 2015, 20(3): 261-268REFERENCES1. BEIG, G., KECKHUT, P., LOWE, R. P., ROBLE, R. G., MLYNCZAK, M. G., SCHEER, J., FOMICHEV, V. I., OFFERMANN, D., FRENCH, W. J. R., SHEPHERD, M. G., SEMENOV, A. I., REMSBERG, E. E., SHE, C. Y., LÜBKEN, F. J., BREMER, J., CLEMESHA, B. R., STEGMAN, J., SIGERNES, F. and FADNAVIS, S., 2003. Review of mesospheric temperature trends. Rev. Geophys. vol. 41, no. 4, pp. 1015–1055. DOI: https://doi.org/10.1029/2002RG000121 2. KOSTSOV, V. S. and TIMOFEYEV, YU. M., 2005. Mesospheric ozone according to data of satellite experiment CRISTA-1: 2. Spatial distribution and diurnal variations. Izvestia RAN. Fizika atmosfery i okeana. vol. 41, no. 2, pp. 72–83 (in Russian). 3. PARDO, J. R., CERNICHARO, J. and PAGANI, L., 1998. Ground-based spectroscopic observations of atmospheric ozone from 142 to 359 GHz in southern Europe. J. Geophys. Res. vol.103, no. D6, pp. 6189–6202. DOI: https://doi.org/10.1029/97JD03628 4. RÜFENACHT, R., KÄMPFER., N., and MURK, A., 2012. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech. vol. 5, no. 11, pp. 2647–2659. DOI: https://doi.org/10.5194/amt-5-2647-2012 5. BURROWS, S., MARTIN, C. and ROBERTS, E., 2007. High-latitude remote sensing of mesospheric wind speeds and carbon monoxide. J. Geophys. Res. vol. 112, no. D17, id. D17109. DOI: https://doi.org/10.1029/2006JD007993 6. PALM, M., HOFFMAN, C. G., GOLCHERT, S. H. W., and NORTHOLT, J., 2010. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3-measurements. Atmos. Meas. Tech. vol. 3, pp. 1533–1545. DOI: https://doi.org/10.5194/amt-3-1533-2010 7. FORKMAN, P., CHRISTENSEN, O. M., ERIKSSON, P., URBAN, J. and FUNKE, B., 2012. Six years of mesospheric CO estimated from ground-based frequencyswitched microwave radiometry at 57º N compared with satellite instruments. Atmos. Meas. Tech. vol. 5, pp. 2827–2841. DOI: https://doi.org/10.5194/amt-5-2827-2012 8. ROZANOV, S. B., LUKIN, A. N. and SOLOMONOV, S. V., 1998. Low-noise cooled planar Schottky diode receivers for ground-based spectral ozone measurements at 142 GHz. Int. J. Infrared Millimeter Waves. vol. 19, no. 2, pp. 195–222. DOI: https://doi.org/10.1023/A:1022567523647 9. PIDDYACHIY, V., KOROLEV, A. and SHULGA, V., 2005. Avery low-noise integrated 3mm-wave Schottky diode mixer and PHEMT IF amplifier. Int. J. Infrared Millimeter Waves. vol. 26, no. 10, pp. 1381–1388. DOI: https://doi.org/10.1007/s10762-005-8436-1 10. PIDDYACHIY, V., SHULGA, V., KOROLEV, A. and MYSHENKO, V.,2005. High doping density Schottky diodes in the 3mm wavelength cryogenic heterodyne receiver. Int. J. Infrared Millimeter Waves. vol. 26, no. 9, pp. 1307–1315. DOI: https://doi.org/10.1007/s10762-005-7605-6 11. FORKMAN, P., PIDDYACHIY, V., KOROLEV, A., MYSHENKO, V., MYSHENKO, A., and SHULGA, V., 2006. An uncooled very low noise Schottky diode receiver frontend for middle atmospheric ozone and carbon monoxides. Int. J. Infrared Millimeter Waves. vol. 27, no. 1, pp. 25–35. DOI: https://doi.org/10.1007/s10762-006-9061-3 12. PIDDYACHIY, V., SHULGA, V., MYSHENKO, V., KOROLEV, A., MYSHENKO, A., ANTYUFEYEV, A., POLADICH, A. and SHKODIN, V., 2010. 3-mm wave spectroradiometer for studies of atmospheric trace gases. Radiophys. Quantum Electron. vol. 53, no. 5,6, pp. 326–333. 13. ALDERT VAN DER ZIEL, 1970. Noise. Sources, characterization, measurement. Englewood Cliffts, N. J.: Prentis-Hall.14. KOROLEV, A. M. 2011. An intermediate frequency amplifier for a radio astronomy superheterodyne receiver. Instruments and Experimental Techniques. vol. 54, no. 1, pp. 81–83. 15. Korolev, A. M. and Shulga, V. M., 2011. Unsaturated Regime as Alternative Method to Provide Stability of Low-Noise Amplifier on High-Electron-Mobility Transistors. Radio Phys. Radio Astron. vol. 16, no. 4, pp. 433–439 (in Russian). 16. KOROLEV, A. M. and SHULGA, V. M., 2003. Ultra-Low-Noise Operation of Broadband Uncooled PHEMT Amplifier in Ultrahigh-Frequency Band. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 21–27 (in Russian). Для наблюдений линии излучения атмосферного озона на частоте 142.2 ГГц разработан малошумящий неохлаждаемый приемник. Получены значения двуполосной шумовой температуры приемника около 350 К в полосе частот 130÷150 ГГц. Описаны критически важные особенности конструкции базовых узлов: смесителя, усилителя промежуточных частот и диплексера. Шумовые характеристики приемника яляются лучшими в классе неохлаждаемых гетеродинных приемников в 2-мм диапазоне длин волн.Ключевые слова: миллиметровые волны, псевдоморфный транзистор с высокой подвижностью электронов, смеситель, атмосферные газыСтатья поступила в редакцию 18.06.2015Radio phys. radio astron. 2015, 20(3): 261-268СПИСОК ЛИТЕРАТУРЫ1. Beig G., Keckhut P., Lowe R. P., Roble R. G., Mlynczak M. G., Scheer J., Fomichev V. I., Offermann D., French W. J. R., Shepherd M. G., Semenov A. I., Remsberg E. E., She C. Y., Lübken F. J., Bremer J., Clemesha B. R., Stegman J., Sigernes F., and Fadnavis S. Review of mesospheric temperature trends // Rev. Geophys. – 2003. – Vol. 41, No.4. – P. 1015–1055. DOI:10.1029/2002RG0001212. Косцов В. С., Тимофеев Ю. М. Озон в мезосфере по данным спутникового эксперимента CRISTA-1: 2. Пространственные распределения и суточные вариации // Известия РАН. Физика атмосферы и океана. – 2005. – Т. 41, № 2. – С. 72–83.3. Pardo J. R., Cernicharo J., and Pagani L. Ground-based spectroscopic observations of atmospheric ozone from 142 to 359 GHz in southern Europe // J. Geophys. Res. – 1998. – Vol. 10, Is. D6. – P. 6189–6202. DOI: 10.1029/97JD036284. Rüfenacht R., Kämpfer N., and Murk A. First middle-atmospheric zonal wind profile measurements with a new groundbased microwave Doppler-spectro-radiometer // Atmos. Meas. Tech. – 2012. – Vol. 5, No. 11. – P. 2647–2659. DOI: 10.5194/amt-5-2647-20125. Burrows S. M., Martin C. L., and Roberts E. A. Highlatitude remote sensing of mesospheric wind speeds and carbon monoxide // J. Geophy. Res. – 2007. – Vol. 112, Is. D17. – id. D17109. DOI: 10.1029/2006JD0079936. Palm M., Hoffman C. G., Golchert S. H. W., and Northolt J. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3-measurements // Atmos. Meas. Tech. – 2010. – Vol. 3. – P. 1533–1545. DOI: 10.5194/amt-3-1533-20107. Forkman P., Christensen O. M., Eriksson P., Urban J., and Funke B. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57º N compared with satellite instruments // Atmos. Meas. Tech. – 2012. – Vol. 5. – P. 2827–2841. DOI:10.5194/amt-5-2827-20128. Rozanov S. B., Lukin A. N., and Solomonov S. V. Lownoise cooled planar Schottky diode receivers for groundbased spectral ozone measurements at 142 GHz // Int. J. Infrared Millimeter Waves. – 1998. – Vol. 19, No. 2. – P. 195–222.9. Piddyachiy, V., Korolev A., and Shulga V. A very low-noise integrated 3mm-wave Schottky diode mixer and PHEMT IF amplifier // Int. J. Infrared Millimeter Waves. – 2005. – Vol. 26, No. 10. – P. 1381–1388.10. Piddyachiy V., Shulga V., Korolev A., and Myshenko V. High doping density Schottky diodes in the 3mm wavelength cryogenic heterodyne receiver // Int. J. Infrared Millimeter Waves. – 2005. – Vol. 26, No. 9. – P. 1307–1315.11. Forkman P., Piddyachiy V., Korolev A., Myshenko V., Myshenko A., and Shulga V. An uncooled very low noise Schottky diode receiver front-end for middle atmospheric ozone and carbon monoxide measurements // Int. J. Infrared Millimeter Waves. – 2006. – Vol. 27, No.1. – P. 25–35.12. Piddyachiy V., Shulga V., Myshenko V., Korolev A., Myshenko A., Antyufeyev A., Poladich A., and Shkodin V. 3-mm wave spectroradiometer for studies of atmospheric trace gases // Radiophys. Quantum Electron. – 2010. – Vol. 53, No. 5,6. – P. 326–333.13. А. Ван дер Зил. Шум. Источники, описание, измерение. – М: Сов. радио, 1973. – 228 с.14. Королев А. М. Усилитель промежуточной частоты супергетеродинного радиоастрономического приемника // Приборы и техника эксперимента. – 2011. – № 1. – С. 88–90.15. Королев А. М., Шульга В. М. Ненасыщенный режим как альтернативный метод обеспечения устойчивости малошумящих усилителей на полевых транзисторных гетероструктурах // Радиофизика и радиоастрономия. – 2011. – Т. 16, № 4. – С. 433–439.16. А. М. Королев, В. М. Шульга. Режим сверхнизких шумов в широкополосном неохлаждаемом усилителе на PHEMT в дециметровом диапазоне // Радиофизика и радиоастрономия. – 2003. – Т. 8, № 1. – С. 21–27. Для спостережень лінії випромінювання атмосферного озону на частоті 142.2 ГГц розроблено малошумливий неохолоджуваний приймач. Отримано значення двополосної шумової температури приймача близько 350 К у смузі частот 130÷150 ГГц. Описано критично важливі особливості конструкції базових вузлів: змішувача, підсилювача проміжних частот і діплексера. Шумові характеристики приймача є кращими в класі неохолоджуваних гетеродинних приймачів у 2-мм діапазоні довжин хвиль.Ключові слова: міліметрові хвилі, псевдоморфний транзистор з високою рухливістю електронів, змішувач, атмосферні газиСтаття надійшла до редакції 18.06.2015Radio phys. radio astron. 2015, 20(3): 261-268СПИСОК ЛІТЕРАТУРИ1. Beig G., Keckhut P., Lowe R. P., Roble R. G., Mlynczak M. G., Scheer J., Fomichev V. I., Offermann D., French W. J. R., Shepherd M. G., Semenov A. I., Remsberg E. E., She C. Y., Lübken F. J., Bremer J., Clemesha B. R., Stegman J., Sigernes F., and Fadnavis S. Review of mesospheric temperature trends // Rev. Geophys. – 2003. – Vol. 41, No.4. – P. 1015–1055. DOI:10.1029/2002RG0001212. Косцов В. С., Тимофеев Ю. М. Озон в мезосфере по данным спутникового эксперимента CRISTA-1: 2. Пространственные распределения и суточные вариации // Известия РАН. Физика атмосферы и океана. – 2005. – Т. 41, № 2. – С. 72–83.3. Pardo J. R., Cernicharo J., and Pagani L. Ground-based spectroscopic observations of atmospheric ozone from 142 to 359 GHz in southern Europe // J. Geophys. Res. – 1998. – Vol. 10, Is. D6. – P. 6189–6202. DOI: 10.1029/97JD036284. Rüfenacht R., Kämpfer N., and Murk A. First middle-atmospheric zonal wind profile measurements with a new groundbased microwave Doppler-spectro-radiometer // Atmos. Meas. Tech. – 2012. – Vol. 5, No. 11. – P. 2647–2659. DOI: 10.5194/amt-5-2647-20125. Burrows S. M., Martin C. L., and Roberts E. A. Highlatitude remote sensing of mesospheric wind speeds and carbon monoxide // J. Geophy. Res. – 2007. – Vol. 112, Is. D17. – id. D17109. DOI: 10.1029/2006JD0079936. Palm M., Hoffman C. G., Golchert S. H. W., and Northolt J. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3-measurements // Atmos. Meas. Tech. – 2010. – Vol. 3. – P. 1533–1545. DOI: 10.5194/amt-3-1533-20107. Forkman P., Christensen O. M., Eriksson P., Urban J., and Funke B. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57º N compared with satellite instruments // Atmos. Meas. Tech. – 2012. – Vol. 5. – P. 2827–2841. DOI:10.5194/amt-5-2827-20128. Rozanov S. B., Lukin A. N., and Solomonov S. V. Lownoise cooled planar Schottky diode receivers for groundbased spectral ozone measurements at 142 GHz // Int. J. Infrared Millimeter Waves. – 1998. – Vol. 19, No. 2. – P. 195–222.9. Piddyachiy, V., Korolev A., and Shulga V. A very low-noise integrated 3mm-wave Schottky diode mixer and PHEMT IF amplifier // Int. J. Infrared Millimeter Waves. – 2005. – Vol. 26, No. 10. – P. 1381–1388.10. Piddyachiy V., Shulga V., Korolev A., and Myshenko V. High doping density Schottky diodes in the 3mm wavelength cryogenic heterodyne receiver // Int. J. Infrared Millimeter Waves. – 2005. – Vol. 26, No. 9. – P. 1307–1315.11. Forkman P., Piddyachiy V., Korolev A., Myshenko V., Myshenko A., and Shulga V. An uncooled very low noise Schottky diode receiver front-end for middle atmospheric ozone and carbon monoxide measurements // Int. J. Infrared Millimeter Waves. – 2006. – Vol. 27, No.1. – P. 25–35.12. Piddyachiy V., Shulga V., Myshenko V., Korolev A., Myshenko A., Antyufeyev A., Poladich A., and Shkodin V. 3-mm wave spectroradiometer for studies of atmospheric trace gases // Radiophys. Quantum Electron. – 2010. – Vol. 53, No. 5,6. – P. 326–333.13. А. Ван дер Зил. Шум. Источники, описание, измерение. – М: Сов. радио, 1973. – 228 с.14. Королев А. М. Усилитель промежуточной частоты супергетеродинного радиоастрономического приемника // Приборы и техника эксперимента. – 2011. – № 1. – С. 88–90.15. Королев А. М., Шульга В. М. Ненасыщенный режим как альтернативный метод обеспечения устойчивости малошумящих усилителей на полевых транзисторных гетероструктурах // Радиофизика и радиоастрономия. – 2011. – Т. 16, № 4. – С. 433–439.16. А. М. Королев, В. М. Шульга. Режим сверхнизких шумов в широкополосном неохлаждаемом усилителе на PHEMT в дециметровом диапазоне // Радиофизика и радиоастрономия. – 2003. – Т. 8, № 1. – С. 21–27. Видавничий дім «Академперіодика» 2015-12-23 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1221 10.15407/rpra20.03.261 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 20, No 3 (2015); 261 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 20, No 3 (2015); 261 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 20, No 3 (2015); 261 2415-7007 1027-9636 10.15407/rpra20.03 ru http://rpra-journal.org.ua/index.php/ra/article/view/1221/856 Copyright (c) 2015 RADIO PHYSICS AND RADIO ASTRONOMY |