CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS
PACS numbers: 95.75.Wx, 95.85.Bh Purpose: Study of the variability of flux density of extragalactic radio sources (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) according to a long-term (1965–2011) monitoring at 14.5, 8, 4.8 GHz made with a 26-m telescope of the U...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Видавничий дім «Академперіодика»
2016
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1240 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1240 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2017-04-19T14:14:12Z |
| collection |
OJS |
| language |
Russian |
| topic |
extragalactic radio sources quasi-period variability of radio emission wavelet analysis Caterpillar-SSA forecast |
| spellingShingle |
extragalactic radio sources quasi-period variability of radio emission wavelet analysis Caterpillar-SSA forecast Ryabov, M. I. Sukharev, A. L. Donskykh, H. I. CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| topic_facet |
extragalactic radio sources quasi-period variability of radio emission wavelet analysis Caterpillar-SSA forecast внегалактические радиоисточники квазипериод переменность радиоизлучения вейвлет-анализ “Гусеница”-SSA прогноз позагалактичні радіоджерела квазіперіод змінність радіовипромінювання вейвлет-аналіз “Гусениця”-SSA прогноз |
| format |
Article |
| author |
Ryabov, M. I. Sukharev, A. L. Donskykh, H. I. |
| author_facet |
Ryabov, M. I. Sukharev, A. L. Donskykh, H. I. |
| author_sort |
Ryabov, M. I. |
| title |
CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| title_short |
CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| title_full |
CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| title_fullStr |
CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| title_full_unstemmed |
CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS |
| title_sort |
catalog of variability periods of extragalactic radio sources at centimeter wavelengths |
| title_alt |
КАТАЛОГ ПЕРИОДОВ ПЕРЕМЕННОСТИ ВНЕГАЛАКТИЧЕСКИХ РАДИОИСТОЧНИКОВ В САНТИМЕТРОВОМ ДИАПАЗОНЕ ДЛИН ВОЛН КАТАЛОГ ПЕРІОДІВ ЗМІННОСТІ ПОЗАГАЛАКТИЧНИХ РАДІОДЖЕРЕЛ У САНТИМЕТРОВОМУ ДІАПАЗОНІ ДОВЖИН ХВИЛЬ |
| description |
PACS numbers: 95.75.Wx, 95.85.Bh Purpose: Study of the variability of flux density of extragalactic radio sources (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) according to a long-term (1965–2011) monitoring at 14.5, 8, 4.8 GHz made with a 26-m telescope of the University of Michigan. Making up a catalog of quasi-periods values and their properties, as well as using this latter to predict the flux changes after 2011 at 14.5 GHz.Design/methodology/approach: Using wavelet analysis, bandpass filtering and singular spectrum analysis (Caterpillar-SSA) the information is obtained on the values and properties of quasiperiods of radio flux density change, separately for the longterm and short-term variability components. Using these values, for the first time the forecasting with the two methods – harmonic and autoregressive linear prediction, has been made.Findings: The catalog of quasi-periodic components of flux density variability is compiled for 10 radio sources, forming dynamics of their activity. The variability of extragalactic radio sources is shown to be formed by adding the quasi-periodic components on different time scales. The results of forecasts showed good compliance with real observations from MOJAVE database. Autoregression method is preferred for a short-term forecasting of flux density changes for radio sources with complex processes of variability.Conclusions: Presented values and properties of quasi-periods are designed to build theoretical models of short-term and longterm variabilities of extragalactic radio sources. The ability to predict changes in flux density of extragalactic radio sources using their variability data enables efficient planning of observation programs.Key words:extragalactic radio sources, quasi-period, variability of radio emission, wavelet analysis, Caterpillar-SSA, forecastManuscript submitted 12.06.2016Radio phys. radio astron. 2016, 21(3): 161-188REFERENCES1. WENGER, M., OCHSENBEIN, F., EGRE, D., DUBOIS, P., BONNAREL, F., BORDE, S., GENOVA, F., JASNIEWICZ, G., LALOË, S., LESTEVEN, S. and MONIER, R., 2000. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. vol. 143, pp. 9–22. DOI: https://doi.org/10.1051/aas:2000332 2. KOMBERG, B. V. and REPIN, S. V., 2014. Universe star islands with relativistic "geysers" in the centers (Galaxy on "desktop"). Moscow: Yanus-K Publ. (in Russian). 3. RIEGER F. M., 2005. Periodic variability and binary black hole systems in blazars. AIP Conf. Proc. vol. 745, pp. 487–492. DOI: https://doi.org/10.1063/1.1878450 4. DE VRIES, W. H., BECKER, R. H., WHITE R. L. and LOOMIS, C., 2005. Structure Function Analysis of Long-Term Quasar Variability. Astron. J. vol. 129, no. 2, pp. 615–629. DOI: https://doi.org/10.1086/427393 5. COWPERTHWAITE, P. S. and REYNOLDS, C. S., 2012. The Central Engine Structure of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk. Astrophys. J. Lett. vol. 752, no. 2, id. L21. DOI: https://doi.org/10.1088/2041-8205/752/2/L21 6. MARSCHER, A. P., 2006. Relativistic Jets in Active Galactic Nuclei. AIP Conf. Proc. vol. 856, pp. 1–22. DOI: https://doi.org/10.1063/1.2356381 7. MIZUNO, Y., LYUBARSKY, Yu., NISHIKAWA, K.-I. and HARDEE, P. E., 2012. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. III. Rotating Relativistic Jets. Astrophys. J. vol. 757, no. 1, id. 16. DOI: https://doi.org/10.1088/0004-637X/757/1/16 8. KING, A. R., PRINGLE, J. E., WEST, R. G. and LIVIO, M., 2004. Variability in black hole accretion discs. Mon. Not. R. Astron. Soc. vol. 348, is. 1, pp. 111–122. DOI: https://doi.org/10.1111/j.1365-2966.2004.07322.x 9. MATSUMOTO, R., KATO, S., and HONMA, F., 1989. Chapter 16. Nonlinear Pulsation in the Transonic Region of Geometrically Thin Accretion Disks. In: F. MEYER,W. J. DUSCHL, J. FRANK, and E. MEYER-HOFMEISTER, eds. Theory of Accretion Disks. Netherlands: Springer, pp. 167–172. DOI: https://doi.org/10.1007/978-94-009-1037-9_16 10. FAN, J. H., LIU, Y., YUAN, Y. H., WANG, H. G., WANG, Y. X., GUPTA, A. C., YANG, J. H., LI, J., ZHOU, J. L., XU, S. X., CHEN, J. L., LIU, F. and LI, Y. Z., 2006. Radio variability properties of a sample of 168 radio sources: Periodicity analysis. Chin. J. Astron. Astrophys. vol. 6, suppl. 2, pp. 333–336. DOI: https://doi.org/10.1088/1009-9271/6/S2/62 11. HOVATTA, T., LEHTO, H. J. and TORNIKOSKI, M., 2008. Wavelet analysis of a large sample of AGN at high radio frequencies. Astron. Astrophys. vol. 488, no. 3, pp. 897–903. DOI: https://doi.org/10.1051/0004-6361:200810200 12. HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 1992. The University of Michigan radio astronomy data base. I - Structure function analysis and the relation between BLLacertae objects and quasi-stellar objects. Astrophys. J. vol. 396, No. 2, pp. 469–486. DOI: https://doi.org/10.1086/171734 13. ALLER, H. D., ALLER, M. F., LATIMER, G. E. and HODGE, P. E., 1985. Spectra and Linear Polarizations of Extragalactic Variable Sources at Centimeter Wavelengths. Astrophys. J. Suppl. Ser. vol. 59, pp. 513–768. DOI: https://doi.org/10.1086/191083 14. GAYDYSHEV, I., 2001. Data processing and analysis: Special handbook. St. Petersburg: Piter Publ. (in Russian). 15. DAVYDOV, A. V., 2007-2010. Digital Signal Processing:Thematic lectures. Yekaterinburg: Ural State Mining University, Department of Geoinformatics (in Russian). 16. SMOLENTSEV, N. K., 2008. Wavelet Theory Fundamentals. Wavelets in Matlab. Moscow: DMK Press Publ. (in Russian). 17. BOZHOKIN, S. V., 2012. Continuous wavelet transform and exactly solvable model of nonstationary signals. Tech. Phys. vol. 57, is. 7, pp. 900–906. 18. MALLAT, S. A., 1998. Wavelet Tour of Signal Processing. San Diego, CA: Academic Press. 19. TORRENCE, C. and COMPO, G. P., 1998. A practical guide to wavelet analysis. Bul. Amer. Met. Soc. vol. 79, no. 1, pp. 61–78. DOI: 10.1175/1520-0477(1998)07960;0061:apgtwa62;2.0.co;2 20. ASTAFIEVA, N. M., 1996. Wavelet analysis: basic theory and some applications. Uspekhi Fizicheskikh Nauk. vol. 166, no. 11, pp. 1145–1170 (in Russian). DOI: https://doi.org/10.3367/UFNr.0166.199611a.1145 21. ALEXANDROV, F. I. and GOLYANDINA, N. E., 2004.The automatic extraction of time series trend and periodical components with the help of the "Caterpillar"-SSA approach. Exponenta Pro. Mathematics in applications. no. 3–4, pp. 54–61 (in Russian). 22. GOLYANDINA, N. E., 2004. The"Caterpillar"-SSA method: time series analysis (User manual). St. Petersburg: St. Petersburg University Publ. (in Russian).23. CHISTYAKOVA, A. A. and SHAMSHA, B. V., 2011. Identification of the structure of nonstationary time series with the singular spectrum analysis method. Radіoelektronіc and computer systems. vol. 4 (52), pp. 105–111. (in Russian). 24. SHIMANOV, S. N., TSYMBAL, V. A., PRASOLOV, V. A. and FRANKOV, S. V., 2015. Adaptive digital filtering of signals against white Gaussian noise based on singular expansion in linear manifolds. In: Izvestija Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. Tula, Russia: Publishing house of TULGU. vol. 11, pp. 128–136 (in Russian). 25. ABRAHAM, Z. and ROMERO, G. E., 1999. Beaming and precession in the inner jet of 3C 273. Astron. Astrophys. vol. 344, no. 1, pp. 61–67. 26. BI XIONGWEI, HE WANQUAN, TIAN JIAJIN, ZHANG QINGYOU and CAI QUN,2012. Analysis of Multi-Wavelength Variation Periods of the Quasar 3C 273. Astron. Res. Technol. vol. 9, no. 4, pp. 339–347. 27. MAO LI-SHENG, 2007. A Possible Periodicity in the Radio Light Curves of 3C 120. Astron. Res. Technol. vol. 4, no. 4, pp. 307–312. 28. BELOKON', E. T., 1987. 3C 120: Connection between the optical variability and superluminal components of the millisecond radio structure. Astrophysics. vol. 27, no. 3, pp. 588–598. DOI: https://doi.org/10.1007/BF01012448 29. VOL'VACH, A. E., KUTKIN, A. M., VOL'VACH, L. N., LARIONOV, M. G., LAKHTEENMAKI, A., TORNIKOSKI, M., NIEPPOLA, E., TAMMI, J., SAVOLAINEN, P., LEON-TAVARES, J., ALLER, M. F. and ALLER, H. D., 2013. Results of long-term monitoring of 3C 273 over a wide range of wavelengths. Astron. Rep. vol. 57, no. 1, pp. 34–45. DOI: https://doi.org/10.1134/S1063772912050083 30. DONG FUTONG, ZHANG ZUOJING, MAO LISHENG, ZHANG XIONG, ZHENG YONGGANG and TANG LING, 2010. Wavelet Analysis of the Variability Periodicity Data of Quasar 3C 345. Acta Astronomica Sinica. vol. 51, no. 2, pp. 117–126. 31. QIAN SHAN-JIE, WITZEL, A., ZENSUS, J. A., KRICHBAUM, T. P., BRITZEN, S. and ZHANG XI-ZHEN, 2009. Periodicity of the ejection of superluminal components in 3C 345. Res. Astron. Astrophys. vol. 9, is. 2, pp. 137–150. DOI: https://doi.org/10.1088/1674-4527/9/2/003 32. KLARE, J., ZENSUS, J. A., LOBANOV, A. P., ROS, E.,KRICHBAUM, T. P. and WITZEL, A., 2005. Quasi-PeriodicChanges in the Parsec-Scale Jet of 3C 345. In: J. ROMNEY and M. REID, eds. Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA,ASP: Conf. Proc. San Francisco, USA: Astronomical Societyof the Pacific. vol. 340. pp. 40. 33. BABADZHANYANTS, M. K. and BELOKON', E. T., 1984. Properties of optical variability of the quasar 3C 345. Astrophysics. vol. 21, is. 2, pp. 461–469. DOI: https://doi.org/10.1007/BF01813647 34. VOLVACH, A. E., VOLVACH, L. N., LARIONOV, M. G., ALLER, H. D., ALLER, M. F., YUROVSKIY, Yu. Yu. and RYABOV, M. I., 2006. Flux density evolution of the sources 3C 273, 3C 279 and 3C 454.3 at the frequencies102 MHz – 36.8 GHz. Astron. Astrophys. Trans. vol. 25, no. 5–6, pp. 385–391. DOI: https://doi.org/10.1080/10556790601135059 35. QIAN SHAN-JIE, KUDRYAVTSEVA, N. A., BRITZEN, S., KRICHBAUM, T. P., GAO LONG, WITZEL, A., ZENSUS,J. A., ALLER, M. F., ALLER H. D. and ZHANGXI-ZHEN, 2006. A Possible Periodicity in the Radio Light Curves of 3C 454.3. Chinese J. Astron. Astrophys. vol. 7, no. 3, pp. 364–374. DOI: https://doi.org/10.1088/1009-9271/7/3/05 36. KELLY, B. C., HUGHES, P. A., ALLER, H. D. and ALLER,M. F., 2003. The Cross-Wavelet Transform and Analysis of Quasi-periodic Behavior in the Pearson-Readhead VLBI Survey Sources. Astrophys. J. vol. 591, no. 2,pp. 695–714. DOI: https://doi.org/10.1086/375511 37. WEIZHAO SHI, XIANG LIU and HUAGANG SONG,2007. A new model for the periodic outbursts of the BL Lac object OJ287. Astrophys. Space Sci. vol. 310, is. 1, pp. 59–63. DOI: https://doi.org/10.1007/s10509-007-9413-z 38. HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 1998. Extraordinary Activity in the BL Lacertae Object OJ 287. Astrophys. J. vol. 503, no. 2, pp. 662– 673. DOI: https://doi.org/10.1086/306014 39. ISHIDA, T., FUJISAWA, K., KINO, M. and NIINUMA, K., 2012. A short-term flare on a time scale of 20 days in the BL Lac object OT 081. In: 11th European VLBI NetworkSymposium & Users Meeting, Bordeaux, France, October 9-12: Symp. Proc. id. 101. 40. HUMRICKHOUSE, C. and WEBB, J. R., 2008. Wavelet Analysis of Microvariability in Blazars 0716+714, ON231 and BL Lac. Journal of the Southeastern Association for Research in Astronomy. vol. 2, pp. 23–29. 41. GUO, Y. C., HU, S. M., XU, C., LIU, C. Y., CHEN, X., GUO, D. F., MENG, F. Y., XU, M. T. and XU, J. Q., 2015. Long-term optical and radio variability of BL Lacertae. New Astron. vol. 36, pp. 9–18. DOI: https://doi.org/10.1016/j.newast.2014.09.011 42. KUDRYAVTSEVA, N. A. and PYATUNINA, T. B., 2006. A search for periodicity in the light curves of selected blazars. Astron. Rep. vol. 50, is. 1, pp. 1–11. DOI: https://doi.org/10.1134/S106377290601001X 43. BARBIERI, C., VIO, R., CAPPELLARO, E. and TURRANO, M., 1990. The optical variability of the quasar 3C 446. Astrophys. J. vol. 359. pp. 63–66. DOI: https://doi.org/10.1086/169033 44. LOMB, N. R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. vol. 39, is. 2, pp. 447–462. DOI: https://doi.org/10.1007/BF00648343 45. SCARGLE, J. D., 1982. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis ofunevenly spaced data. Astrophys. J. vol. 263, pp. 835–853.DOI: https://doi.org/10.1086/160554 46. HAO JING ZHANG, GANG ZHAO and XIONG ZHANG, 2010. The periodicity of 3C 273's radio light curve at 15 GHz found by the wavelet method. Science China Physics, Mechanics and Astronomy. vol. 53, is. 1, pp. 252–255. 47. HUAI-ZHEN LI, GUANG-ZHONG XIE, SHU-BAIZHOU, HONG-TAO LIU, GUANG-WEI CHA, LI MAand LI-SHENG MAO, 2006. Periodicity Analysis of the Light Curve of 3C 454.3. Chin. J. Astron. Astrophys. vol. 6, no. 4, pp. 421–430. DOI: https://doi.org/10.1088/1009-9271/6/4/04 48. XU YUN-BING, ZHANG HAO-JING and WANG LIHENG,2010. A Study of the Light Curve Period of BL Lac OJ 287. Journal of Yunnan Normal University (Natural Sciences Edition). vol. 4, pp. 1–4. 49. ZHANG, X., XIE, G. Z. and BAI, J. M., 1998. A historical light curve of 3C 345 and its periodic analysis. Astron. Astrophys. vol. 330, pp. 469–473. 50. ZHANG HAO-JING and ZHANG XIONG, 2007. A study of the light curve periodic behavior of BL Lac object S5 0716+714. Acta Physica Sinica. vol. 56, is. 7, pp. 4305–4311. 51. MORDVINOV, A. V., 1986. Prediction of monthly indices of solar activity F10.7 on the basis of a multiplicative autoregression model. Byulletin Solnechnye Dannye Akademii Nauk USSR. no. 1985/12, pp. 67–73. 52. LIU SI-QING, ZHONG QIU-ZHEN, WEN JING and DOU XIAN-KANG, 2010. Modeling Research of the 27-day Forecast of 10.7 cm Solar Radio Flux (I). Chin. Astron. Astrophys. vol. 34, is. 3, pp. 305–315. DOI: https://doi.org/10.1016/j.chinastron.2010.07.006 53. KANE, R. P. and TRIVEDI, N. B., 1985. Periodicitiesin sunspot numbers. J. Geomagn. Geoelectricity. vol. 37, no. 12, pp. 1071–1085. DOI: https://doi.org/10.5636/jgg.37.1071 54. VASEGHI SAEED, V., 2006. Advanced digital signal processing and noise reduction. Chichester, England: JohnWiley & Sons Ltd. 55. MARPLE, S. L., 1987. Digital spectral analysis with applications. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 56. MAKHOUL, J., 1975. Linear prediction: A tutorial review. Proc. IEEE. vol. 63, is. 4, pp. 561–580. DOI: https://doi.org/10.1109/PROC.1975.9792 57. SHAKHTARIN, B. I. and KOVRIGIN, V. A. 2005. Methods of spectral estimation of random processes. Moscow: Gelios ARV. (in Russian). 58. KAY, S. M., 1988. Modern spectral estimation: Theoryand application. Englewood Cliffs, N. J. : Prentice-Hall, Inc. 59. RISSANEN, J., 1983. A Universal Prior for Integers and Estimation by Minimum Description Length. Ann. Statist. vol. 11, no. 2, pp. 416–431. DOI: https://doi.org/10.1214/aos/1176346150 60. ULRYCH, T. J. and CLAYTON, R. W., 1976. Time series modelling and maximum entropy. Phys. Earth Planet. Inter. vol. 12, iss. 2–3, pp. 188–200. DOI: https://doi.org/10.1016/0031-9201(76)90047-9 61. TUFTS, D. and KUMARESAN, R., 1982. Singular value decomposition and improved frequency estimation using linear prediction. IEEE Trans. Acoust. Speech Signal Process. vol. 30, is. 4, pp. 671–675. DOI: https://doi.org/10.1109/TASSP.1982.1163927 62. UIKE, M., UCHIYAMA, T. and MINAMITANI, H., 1992. Comparison of linear prediction methods based on singular value decomposition. J. Magn. Reson. vol. 99, is. 2, pp. 363–371. DOI: https://doi.org/10.1016/0022-2364(92)90188-D 63. LISTER, M. L., COHEN, M. H., HOMAN, D. C., KADLER, M., KELLERMANN, K. I., KOVALEV, Y. Y., ROS, E., SAVOLAINEN, T. and ZENSUS, J. A., 2009. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets. Astron. J. vol. 138, is. 6, pp. 1874–1892. DOI: https://doi.org/10.1088/0004-6256/138/6/1874 64. SUKHAREV, A. L., RYABOV, M. I. and DONSKIKH, G. I., 2016. Predicting Changes in the Radio Emission Fluxesof Extragalactic Sources. Astrophysics. vol. 59, no. 2, pp. 213–226. DOI: https://doi.org/10.1007/s10511-016-9428-7 65. DONSKYKH, G. I., RYABOV, M. I., SUKHAREV, A. L. and ALLER, M., M., 2014. Using the methods of wavelet analysis and singular spectrum analysis in the study of radio source BL Lac. Odessa Astronomical Publications. vol. 27, is. 1, pp. 69–70. |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2016 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1240 |
| work_keys_str_mv |
AT ryabovmi catalogofvariabilityperiodsofextragalacticradiosourcesatcentimeterwavelengths AT sukhareval catalogofvariabilityperiodsofextragalacticradiosourcesatcentimeterwavelengths AT donskykhhi catalogofvariabilityperiodsofextragalacticradiosourcesatcentimeterwavelengths AT ryabovmi katalogperiodovperemennostivnegalaktičeskihradioistočnikovvsantimetrovomdiapazonedlinvoln AT sukhareval katalogperiodovperemennostivnegalaktičeskihradioistočnikovvsantimetrovomdiapazonedlinvoln AT donskykhhi katalogperiodovperemennostivnegalaktičeskihradioistočnikovvsantimetrovomdiapazonedlinvoln AT ryabovmi katalogperíodívzmínnostípozagalaktičnihradíodžerelusantimetrovomudíapazonídovžinhvilʹ AT sukhareval katalogperíodívzmínnostípozagalaktičnihradíodžerelusantimetrovomudíapazonídovžinhvilʹ AT donskykhhi katalogperíodívzmínnostípozagalaktičnihradíodžerelusantimetrovomudíapazonídovžinhvilʹ |
| first_indexed |
2025-12-02T15:36:47Z |
| last_indexed |
2025-12-02T15:36:47Z |
| _version_ |
1850763752904851456 |
| spelling |
rpra-journalorgua-article-12402017-04-19T14:14:12Z CATALOG OF VARIABILITY PERIODS OF EXTRAGALACTIC RADIO SOURCES AT CENTIMETER WAVELENGTHS КАТАЛОГ ПЕРИОДОВ ПЕРЕМЕННОСТИ ВНЕГАЛАКТИЧЕСКИХ РАДИОИСТОЧНИКОВ В САНТИМЕТРОВОМ ДИАПАЗОНЕ ДЛИН ВОЛН КАТАЛОГ ПЕРІОДІВ ЗМІННОСТІ ПОЗАГАЛАКТИЧНИХ РАДІОДЖЕРЕЛ У САНТИМЕТРОВОМУ ДІАПАЗОНІ ДОВЖИН ХВИЛЬ Ryabov, M. I. Sukharev, A. L. Donskykh, H. I. extragalactic radio sources; quasi-period; variability of radio emission; wavelet analysis; Caterpillar-SSA; forecast внегалактические радиоисточники; квазипериод; переменность радиоизлучения; вейвлет-анализ; “Гусеница”-SSA; прогноз позагалактичні радіоджерела; квазіперіод; змінність радіовипромінювання; вейвлет-аналіз; “Гусениця”-SSA; прогноз PACS numbers: 95.75.Wx, 95.85.Bh Purpose: Study of the variability of flux density of extragalactic radio sources (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) according to a long-term (1965–2011) monitoring at 14.5, 8, 4.8 GHz made with a 26-m telescope of the University of Michigan. Making up a catalog of quasi-periods values and their properties, as well as using this latter to predict the flux changes after 2011 at 14.5 GHz.Design/methodology/approach: Using wavelet analysis, bandpass filtering and singular spectrum analysis (Caterpillar-SSA) the information is obtained on the values and properties of quasiperiods of radio flux density change, separately for the longterm and short-term variability components. Using these values, for the first time the forecasting with the two methods – harmonic and autoregressive linear prediction, has been made.Findings: The catalog of quasi-periodic components of flux density variability is compiled for 10 radio sources, forming dynamics of their activity. The variability of extragalactic radio sources is shown to be formed by adding the quasi-periodic components on different time scales. The results of forecasts showed good compliance with real observations from MOJAVE database. Autoregression method is preferred for a short-term forecasting of flux density changes for radio sources with complex processes of variability.Conclusions: Presented values and properties of quasi-periods are designed to build theoretical models of short-term and longterm variabilities of extragalactic radio sources. The ability to predict changes in flux density of extragalactic radio sources using their variability data enables efficient planning of observation programs.Key words:extragalactic radio sources, quasi-period, variability of radio emission, wavelet analysis, Caterpillar-SSA, forecastManuscript submitted 12.06.2016Radio phys. radio astron. 2016, 21(3): 161-188REFERENCES1. WENGER, M., OCHSENBEIN, F., EGRE, D., DUBOIS, P., BONNAREL, F., BORDE, S., GENOVA, F., JASNIEWICZ, G., LALOË, S., LESTEVEN, S. and MONIER, R., 2000. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. vol. 143, pp. 9–22. DOI: https://doi.org/10.1051/aas:2000332 2. KOMBERG, B. V. and REPIN, S. V., 2014. Universe star islands with relativistic "geysers" in the centers (Galaxy on "desktop"). Moscow: Yanus-K Publ. (in Russian). 3. RIEGER F. M., 2005. Periodic variability and binary black hole systems in blazars. AIP Conf. Proc. vol. 745, pp. 487–492. DOI: https://doi.org/10.1063/1.1878450 4. DE VRIES, W. H., BECKER, R. H., WHITE R. L. and LOOMIS, C., 2005. Structure Function Analysis of Long-Term Quasar Variability. Astron. J. vol. 129, no. 2, pp. 615–629. DOI: https://doi.org/10.1086/427393 5. COWPERTHWAITE, P. S. and REYNOLDS, C. S., 2012. The Central Engine Structure of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk. Astrophys. J. Lett. vol. 752, no. 2, id. L21. DOI: https://doi.org/10.1088/2041-8205/752/2/L21 6. MARSCHER, A. P., 2006. Relativistic Jets in Active Galactic Nuclei. AIP Conf. Proc. vol. 856, pp. 1–22. DOI: https://doi.org/10.1063/1.2356381 7. MIZUNO, Y., LYUBARSKY, Yu., NISHIKAWA, K.-I. and HARDEE, P. E., 2012. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. III. Rotating Relativistic Jets. Astrophys. J. vol. 757, no. 1, id. 16. DOI: https://doi.org/10.1088/0004-637X/757/1/16 8. KING, A. R., PRINGLE, J. E., WEST, R. G. and LIVIO, M., 2004. Variability in black hole accretion discs. Mon. Not. R. Astron. Soc. vol. 348, is. 1, pp. 111–122. DOI: https://doi.org/10.1111/j.1365-2966.2004.07322.x 9. MATSUMOTO, R., KATO, S., and HONMA, F., 1989. Chapter 16. Nonlinear Pulsation in the Transonic Region of Geometrically Thin Accretion Disks. In: F. MEYER,W. J. DUSCHL, J. FRANK, and E. MEYER-HOFMEISTER, eds. Theory of Accretion Disks. Netherlands: Springer, pp. 167–172. DOI: https://doi.org/10.1007/978-94-009-1037-9_16 10. FAN, J. H., LIU, Y., YUAN, Y. H., WANG, H. G., WANG, Y. X., GUPTA, A. C., YANG, J. H., LI, J., ZHOU, J. L., XU, S. X., CHEN, J. L., LIU, F. and LI, Y. Z., 2006. Radio variability properties of a sample of 168 radio sources: Periodicity analysis. Chin. J. Astron. Astrophys. vol. 6, suppl. 2, pp. 333–336. DOI: https://doi.org/10.1088/1009-9271/6/S2/62 11. HOVATTA, T., LEHTO, H. J. and TORNIKOSKI, M., 2008. Wavelet analysis of a large sample of AGN at high radio frequencies. Astron. Astrophys. vol. 488, no. 3, pp. 897–903. DOI: https://doi.org/10.1051/0004-6361:200810200 12. HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 1992. The University of Michigan radio astronomy data base. I - Structure function analysis and the relation between BLLacertae objects and quasi-stellar objects. Astrophys. J. vol. 396, No. 2, pp. 469–486. DOI: https://doi.org/10.1086/171734 13. ALLER, H. D., ALLER, M. F., LATIMER, G. E. and HODGE, P. E., 1985. Spectra and Linear Polarizations of Extragalactic Variable Sources at Centimeter Wavelengths. Astrophys. J. Suppl. Ser. vol. 59, pp. 513–768. DOI: https://doi.org/10.1086/191083 14. GAYDYSHEV, I., 2001. Data processing and analysis: Special handbook. St. Petersburg: Piter Publ. (in Russian). 15. DAVYDOV, A. V., 2007-2010. Digital Signal Processing:Thematic lectures. Yekaterinburg: Ural State Mining University, Department of Geoinformatics (in Russian). 16. SMOLENTSEV, N. K., 2008. Wavelet Theory Fundamentals. Wavelets in Matlab. Moscow: DMK Press Publ. (in Russian). 17. BOZHOKIN, S. V., 2012. Continuous wavelet transform and exactly solvable model of nonstationary signals. Tech. Phys. vol. 57, is. 7, pp. 900–906. 18. MALLAT, S. A., 1998. Wavelet Tour of Signal Processing. San Diego, CA: Academic Press. 19. TORRENCE, C. and COMPO, G. P., 1998. A practical guide to wavelet analysis. Bul. Amer. Met. Soc. vol. 79, no. 1, pp. 61–78. DOI: 10.1175/1520-0477(1998)07960;0061:apgtwa62;2.0.co;2 20. ASTAFIEVA, N. M., 1996. Wavelet analysis: basic theory and some applications. Uspekhi Fizicheskikh Nauk. vol. 166, no. 11, pp. 1145–1170 (in Russian). DOI: https://doi.org/10.3367/UFNr.0166.199611a.1145 21. ALEXANDROV, F. I. and GOLYANDINA, N. E., 2004.The automatic extraction of time series trend and periodical components with the help of the "Caterpillar"-SSA approach. Exponenta Pro. Mathematics in applications. no. 3–4, pp. 54–61 (in Russian). 22. GOLYANDINA, N. E., 2004. The"Caterpillar"-SSA method: time series analysis (User manual). St. Petersburg: St. Petersburg University Publ. (in Russian).23. CHISTYAKOVA, A. A. and SHAMSHA, B. V., 2011. Identification of the structure of nonstationary time series with the singular spectrum analysis method. Radіoelektronіc and computer systems. vol. 4 (52), pp. 105–111. (in Russian). 24. SHIMANOV, S. N., TSYMBAL, V. A., PRASOLOV, V. A. and FRANKOV, S. V., 2015. Adaptive digital filtering of signals against white Gaussian noise based on singular expansion in linear manifolds. In: Izvestija Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. Tula, Russia: Publishing house of TULGU. vol. 11, pp. 128–136 (in Russian). 25. ABRAHAM, Z. and ROMERO, G. E., 1999. Beaming and precession in the inner jet of 3C 273. Astron. Astrophys. vol. 344, no. 1, pp. 61–67. 26. BI XIONGWEI, HE WANQUAN, TIAN JIAJIN, ZHANG QINGYOU and CAI QUN,2012. Analysis of Multi-Wavelength Variation Periods of the Quasar 3C 273. Astron. Res. Technol. vol. 9, no. 4, pp. 339–347. 27. MAO LI-SHENG, 2007. A Possible Periodicity in the Radio Light Curves of 3C 120. Astron. Res. Technol. vol. 4, no. 4, pp. 307–312. 28. BELOKON', E. T., 1987. 3C 120: Connection between the optical variability and superluminal components of the millisecond radio structure. Astrophysics. vol. 27, no. 3, pp. 588–598. DOI: https://doi.org/10.1007/BF01012448 29. VOL'VACH, A. E., KUTKIN, A. M., VOL'VACH, L. N., LARIONOV, M. G., LAKHTEENMAKI, A., TORNIKOSKI, M., NIEPPOLA, E., TAMMI, J., SAVOLAINEN, P., LEON-TAVARES, J., ALLER, M. F. and ALLER, H. D., 2013. Results of long-term monitoring of 3C 273 over a wide range of wavelengths. Astron. Rep. vol. 57, no. 1, pp. 34–45. DOI: https://doi.org/10.1134/S1063772912050083 30. DONG FUTONG, ZHANG ZUOJING, MAO LISHENG, ZHANG XIONG, ZHENG YONGGANG and TANG LING, 2010. Wavelet Analysis of the Variability Periodicity Data of Quasar 3C 345. Acta Astronomica Sinica. vol. 51, no. 2, pp. 117–126. 31. QIAN SHAN-JIE, WITZEL, A., ZENSUS, J. A., KRICHBAUM, T. P., BRITZEN, S. and ZHANG XI-ZHEN, 2009. Periodicity of the ejection of superluminal components in 3C 345. Res. Astron. Astrophys. vol. 9, is. 2, pp. 137–150. DOI: https://doi.org/10.1088/1674-4527/9/2/003 32. KLARE, J., ZENSUS, J. A., LOBANOV, A. P., ROS, E.,KRICHBAUM, T. P. and WITZEL, A., 2005. Quasi-PeriodicChanges in the Parsec-Scale Jet of 3C 345. In: J. ROMNEY and M. REID, eds. Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA,ASP: Conf. Proc. San Francisco, USA: Astronomical Societyof the Pacific. vol. 340. pp. 40. 33. BABADZHANYANTS, M. K. and BELOKON', E. T., 1984. Properties of optical variability of the quasar 3C 345. Astrophysics. vol. 21, is. 2, pp. 461–469. DOI: https://doi.org/10.1007/BF01813647 34. VOLVACH, A. E., VOLVACH, L. N., LARIONOV, M. G., ALLER, H. D., ALLER, M. F., YUROVSKIY, Yu. Yu. and RYABOV, M. I., 2006. Flux density evolution of the sources 3C 273, 3C 279 and 3C 454.3 at the frequencies102 MHz – 36.8 GHz. Astron. Astrophys. Trans. vol. 25, no. 5–6, pp. 385–391. DOI: https://doi.org/10.1080/10556790601135059 35. QIAN SHAN-JIE, KUDRYAVTSEVA, N. A., BRITZEN, S., KRICHBAUM, T. P., GAO LONG, WITZEL, A., ZENSUS,J. A., ALLER, M. F., ALLER H. D. and ZHANGXI-ZHEN, 2006. A Possible Periodicity in the Radio Light Curves of 3C 454.3. Chinese J. Astron. Astrophys. vol. 7, no. 3, pp. 364–374. DOI: https://doi.org/10.1088/1009-9271/7/3/05 36. KELLY, B. C., HUGHES, P. A., ALLER, H. D. and ALLER,M. F., 2003. The Cross-Wavelet Transform and Analysis of Quasi-periodic Behavior in the Pearson-Readhead VLBI Survey Sources. Astrophys. J. vol. 591, no. 2,pp. 695–714. DOI: https://doi.org/10.1086/375511 37. WEIZHAO SHI, XIANG LIU and HUAGANG SONG,2007. A new model for the periodic outbursts of the BL Lac object OJ287. Astrophys. Space Sci. vol. 310, is. 1, pp. 59–63. DOI: https://doi.org/10.1007/s10509-007-9413-z 38. HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 1998. Extraordinary Activity in the BL Lacertae Object OJ 287. Astrophys. J. vol. 503, no. 2, pp. 662– 673. DOI: https://doi.org/10.1086/306014 39. ISHIDA, T., FUJISAWA, K., KINO, M. and NIINUMA, K., 2012. A short-term flare on a time scale of 20 days in the BL Lac object OT 081. In: 11th European VLBI NetworkSymposium & Users Meeting, Bordeaux, France, October 9-12: Symp. Proc. id. 101. 40. HUMRICKHOUSE, C. and WEBB, J. R., 2008. Wavelet Analysis of Microvariability in Blazars 0716+714, ON231 and BL Lac. Journal of the Southeastern Association for Research in Astronomy. vol. 2, pp. 23–29. 41. GUO, Y. C., HU, S. M., XU, C., LIU, C. Y., CHEN, X., GUO, D. F., MENG, F. Y., XU, M. T. and XU, J. Q., 2015. Long-term optical and radio variability of BL Lacertae. New Astron. vol. 36, pp. 9–18. DOI: https://doi.org/10.1016/j.newast.2014.09.011 42. KUDRYAVTSEVA, N. A. and PYATUNINA, T. B., 2006. A search for periodicity in the light curves of selected blazars. Astron. Rep. vol. 50, is. 1, pp. 1–11. DOI: https://doi.org/10.1134/S106377290601001X 43. BARBIERI, C., VIO, R., CAPPELLARO, E. and TURRANO, M., 1990. The optical variability of the quasar 3C 446. Astrophys. J. vol. 359. pp. 63–66. DOI: https://doi.org/10.1086/169033 44. LOMB, N. R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. vol. 39, is. 2, pp. 447–462. DOI: https://doi.org/10.1007/BF00648343 45. SCARGLE, J. D., 1982. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis ofunevenly spaced data. Astrophys. J. vol. 263, pp. 835–853.DOI: https://doi.org/10.1086/160554 46. HAO JING ZHANG, GANG ZHAO and XIONG ZHANG, 2010. The periodicity of 3C 273's radio light curve at 15 GHz found by the wavelet method. Science China Physics, Mechanics and Astronomy. vol. 53, is. 1, pp. 252–255. 47. HUAI-ZHEN LI, GUANG-ZHONG XIE, SHU-BAIZHOU, HONG-TAO LIU, GUANG-WEI CHA, LI MAand LI-SHENG MAO, 2006. Periodicity Analysis of the Light Curve of 3C 454.3. Chin. J. Astron. Astrophys. vol. 6, no. 4, pp. 421–430. DOI: https://doi.org/10.1088/1009-9271/6/4/04 48. XU YUN-BING, ZHANG HAO-JING and WANG LIHENG,2010. A Study of the Light Curve Period of BL Lac OJ 287. Journal of Yunnan Normal University (Natural Sciences Edition). vol. 4, pp. 1–4. 49. ZHANG, X., XIE, G. Z. and BAI, J. M., 1998. A historical light curve of 3C 345 and its periodic analysis. Astron. Astrophys. vol. 330, pp. 469–473. 50. ZHANG HAO-JING and ZHANG XIONG, 2007. A study of the light curve periodic behavior of BL Lac object S5 0716+714. Acta Physica Sinica. vol. 56, is. 7, pp. 4305–4311. 51. MORDVINOV, A. V., 1986. Prediction of monthly indices of solar activity F10.7 on the basis of a multiplicative autoregression model. Byulletin Solnechnye Dannye Akademii Nauk USSR. no. 1985/12, pp. 67–73. 52. LIU SI-QING, ZHONG QIU-ZHEN, WEN JING and DOU XIAN-KANG, 2010. Modeling Research of the 27-day Forecast of 10.7 cm Solar Radio Flux (I). Chin. Astron. Astrophys. vol. 34, is. 3, pp. 305–315. DOI: https://doi.org/10.1016/j.chinastron.2010.07.006 53. KANE, R. P. and TRIVEDI, N. B., 1985. Periodicitiesin sunspot numbers. J. Geomagn. Geoelectricity. vol. 37, no. 12, pp. 1071–1085. DOI: https://doi.org/10.5636/jgg.37.1071 54. VASEGHI SAEED, V., 2006. Advanced digital signal processing and noise reduction. Chichester, England: JohnWiley & Sons Ltd. 55. MARPLE, S. L., 1987. Digital spectral analysis with applications. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 56. MAKHOUL, J., 1975. Linear prediction: A tutorial review. Proc. IEEE. vol. 63, is. 4, pp. 561–580. DOI: https://doi.org/10.1109/PROC.1975.9792 57. SHAKHTARIN, B. I. and KOVRIGIN, V. A. 2005. Methods of spectral estimation of random processes. Moscow: Gelios ARV. (in Russian). 58. KAY, S. M., 1988. Modern spectral estimation: Theoryand application. Englewood Cliffs, N. J. : Prentice-Hall, Inc. 59. RISSANEN, J., 1983. A Universal Prior for Integers and Estimation by Minimum Description Length. Ann. Statist. vol. 11, no. 2, pp. 416–431. DOI: https://doi.org/10.1214/aos/1176346150 60. ULRYCH, T. J. and CLAYTON, R. W., 1976. Time series modelling and maximum entropy. Phys. Earth Planet. Inter. vol. 12, iss. 2–3, pp. 188–200. DOI: https://doi.org/10.1016/0031-9201(76)90047-9 61. TUFTS, D. and KUMARESAN, R., 1982. Singular value decomposition and improved frequency estimation using linear prediction. IEEE Trans. Acoust. Speech Signal Process. vol. 30, is. 4, pp. 671–675. DOI: https://doi.org/10.1109/TASSP.1982.1163927 62. UIKE, M., UCHIYAMA, T. and MINAMITANI, H., 1992. Comparison of linear prediction methods based on singular value decomposition. J. Magn. Reson. vol. 99, is. 2, pp. 363–371. DOI: https://doi.org/10.1016/0022-2364(92)90188-D 63. LISTER, M. L., COHEN, M. H., HOMAN, D. C., KADLER, M., KELLERMANN, K. I., KOVALEV, Y. Y., ROS, E., SAVOLAINEN, T. and ZENSUS, J. A., 2009. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets. Astron. J. vol. 138, is. 6, pp. 1874–1892. DOI: https://doi.org/10.1088/0004-6256/138/6/1874 64. SUKHAREV, A. L., RYABOV, M. I. and DONSKIKH, G. I., 2016. Predicting Changes in the Radio Emission Fluxesof Extragalactic Sources. Astrophysics. vol. 59, no. 2, pp. 213–226. DOI: https://doi.org/10.1007/s10511-016-9428-7 65. DONSKYKH, G. I., RYABOV, M. I., SUKHAREV, A. L. and ALLER, M., M., 2014. Using the methods of wavelet analysis and singular spectrum analysis in the study of radio source BL Lac. Odessa Astronomical Publications. vol. 27, is. 1, pp. 69–70. УДК 524.7; 524.8PACS numbers: 95.75.Wx, 95.85.Bh Предмет и цель работы: Исследуется переменность плотностей потоков излучения внегалактических радиоисточников (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) по данным многолетнего (1965–2011 гг.) мониторинга на частотах 14.5, 8, 4.8 ГГц, выполненного на 26-метровом телескопе Мичиганского университета (UMRAO). Целью работы является составление каталога значений и свойств квазипериодов изменения плотностей потоков радиоизлучения исследуемых радиоисточников, а также прогнозирование на его основе изменений плотностей потоков после 2011 г. на частоте 14.5 ГГц.Методы и методология: C применением вейвлет-анализа, полосовой фильтрации и анализа сингулярного спектра (“Гусеница”-SSA) получена информация о значениях и свойствах квазипериодов изменения плотностей потоков радиоизлучения раздельно для долговременной и быстрой составляющих переменности. С использованием этих значений впервые выполнено прогнозирование двумя методами: гармоническим методом и методом авторегрессионного линейного предсказания.Результаты: Построен каталог квазипериодических составляющих переменности плотностей потоков радиоизлучения 10 радиоисточников, отражающих динамику их активности. Показано, что переменность внегалактических радиоисточников формируется за чет сложения квазипериодических составляющих на различных временных масштабах. Полученные результаты прогнозов показали хорошее соответствие реальным наблюдениям из базы данных MOJAVE. Авторегрессионный метод предпочтителен для краткосрочного прогнозирования изменения плотностей потоков у радиоисточников со сложным характером переменности.Заключение: Представленные значения и свойства квазипериодов предназначены для построения теоретических моделей быстрой и долговременной переменности внегалактических радиоисточников. Возможность прогнозирования изменений плотностей потоков внегалактических радиоисточников на основе данных об их переменности позволяет осуществлять эффективное планирование программ наблюдений.Ключевые слова:внегалактические радиоисточники, квазипериод, переменность радиоизлучения, вейвлет-анализ, “Гусеница”-SSA, прогнозСтатья поступила в редакцию 12.07.2016Radio phys. radio astron. 2016, 21(3): 161-188СПИСОК ЛИТЕРАТУРЫ1. Wenger M., Ochsenbein F., Egre D., Dubois P., BonnarelF., Borde S., Genova F., Jasniewicz G., Laloë S., Lesteven S., and Monier R. The SIMBAD astronomical database. The CDS reference database for astronomical objects // Astron. Astrophys. Suppl. – 2000. – Vol. 143. – P. 9–22. DOI: 10.1051/aas:20003322. Комберг Б. В., Репин С. В. Звездные острова Вселеннойс релятивистскими “гейзерами” в центрах (Галактики на “рабочем столе”). – М.: Янус-К, 2014. – 312 с.3. Rieger F. M. Periodic variability and binary black hole systems in blazars // AIP Conf. Proc. – 2005. – Vol. 745. –P. 487–492. DOI: 10.1063/1.18784504. De Vries W. H., Becker R. H., White R. L., and Loomis C. Structure Function Analysis of Long-Term Quasar Variability // Astron. J. – 2005. – Vol. 129, No. 2. –P. 615–629.5. Cowperthwaite P. S. and Reynolds C. S. The Central Engine Structure Of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk // Astrophys. J. Lett. –2012. – Vol. 752, No. 2. – id. L21. DOI: 10.1088/2041-8205/752/2/L216. Marscher A. P. Relativistic Jets in Active Galactic Nuclei // AIP Conf. Proc. – 2006. – Vol. 856. – P. 1–22. DOI:10.1063/1.23563817. Mizuno Y., Lyubarsky Yu., Nishikawa K.-I., and Hardee P. E. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. III. Rotating RelativisticJets // Astrophys. J. – 2012. – Vol. 757, No. 1. –id. 16. DOI: 10.1088/0004-637X/757/1/168. King A. R., Pringle J. E., West R. G., and Livio M. Variabilityin black hole accretion discs // Mon. Not. R. Astron. Soc. – 2004. – Vol. 348, Is. 1. – P. 111–122. DOI: 10.1111/j.1365-2966.2004.07322.x9. Matsumoto R., Kato S., and Honma F. Chapter 16. NonlinearPulsation in the Transonic Region of Geometrically Thin Accretion Disks / In: Theory of Accretion Disks / F. Meyer, W. J. Duschl, J. Frank, and E. Meyer-Hofmeister,eds. – Netherlands: Springer, 1989. – P. 167–172. DOI:10.1007/978-94-009-1037-9_1610. Fan J. H., Liu Y., Yuan Y. H., Wang H. G., Wang Y. X., Gupta A. C., Yang J. H., Li J., Zhou J. L., Xu S. X., Chen J. L., Liu F., and Li Y. Z. Radio variability properties of a sample of 168 radio sources: Periodicity analysis // Chin. J. Astron. Astrophys. – 2006. – Vol. 6, Suppl. 2. –P. 333–336.11. Hovatta T., Lehto H. J., and Tornikoski M. Wavelet analysis of a large sample of AGN at high radio frequencies // Astron. Astrophys. – 2008. – Vol. 488, No. 3. – P. 897–903. DOI: 10.1051/0004-6361:20081020012. Hughes P. A., Aller H. D., and Aller M. F. The University of Michigan radio astronomy data base. I - Structure function analysis and the relation between BL Lacertae objectsand quasi-stellar objects // Astrophys. J. – 1992. –Vol. 396, No. 2. – P. 469–486. DOI: 10.1086/17173413. Aller H. D., Aller M. F., Latimer G. E., and Hodge P. E. Spectra and Linear Polarizations of Extragalactic Variable Sources at Centimeter Wavelengths // Astrophys. J. Suppl.Ser. – 1985. – Vol. 59. – P. 513–768. DOI: 10.1086/19108314. Гайдышев И. Анализ и обработка данных: Специальный справочник. – Спб: Питер, 2001. – 752 с.15. Давыдов А. В. Цифровая обработка сигналов: Тематические лекции. – Екатеринбург: УГГУ, ИГиГ, кафедра геоинформатики, 2007–2010.16. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в Matlab. – М.: ДМК Пресс, 2008. – 448 с.17. Божокин С. В. Непрерывное вейвлет-преобразование и точно решаемая модель нестационарных сигналов // Журнал технической физики. – 2012. – Т. 82, Вып. 7. –С. 8–13.18. Mallat S. A. Wavelet Tour of Signal Processing. – San Diego, CA: Academic Press, 1998.19. Torrence C. and Compo G. P. A practical guide to waveletanalysis // Bul. Amer. Met. Soc. – 1998. – Vol. 79, No. 1. – P. 61–78. DOI: 10.1175/1520-0477(1998)07960;0061:apgtwa62;2.0.co;220. Астафьева Н. М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. – 1996. –Т. 166, № 11. – С. 1145–1170.21. Александров Ф. И., Голяндина Н. Э. Автоматизация выделения трендовых и периодических составляющих временного ряда в рамках метода “Гусеница”-SSA // Exponenta Pro. Математика в приложениях. – 2004. –№ 3–4. – С. 54–61.22. Голяндина Н. Э. Метод “Гусеница”-SSA: анализ временных рядов (учебное пособие). – Спб.: Из-во Санкт-Петербургского университета, 2004. – 74 с.23. Чистякова А. А., Шамша Б. В. Идентификация структуры нестационарного временного ряда при помощи метода сингулярного спектрального анализа // Радіоелектронні і комп’ютерні системи. – 2011. – № 4 (52). –С. 105–111.24. Шиманов С. Н., Цимбал В. А., Прасолов В. А., Франков С. В. Адаптивная цифровая фильтрация сигналов на фоне “белого” гауссовского шума на основе сингулярного разложения в линейных многообразиях // Известия Тульского государственного университета. Технические науки. – Тула: Из-во ТулГУ, 2015. – Вып. 11. – С. 128–136.25. Abraham Z. and Romero G. E. Beaming and precessionin the inner jet of 3C 273 // Astron. Astrophys. – 1999. –Vol. 344, No. 1. – P. 61–67.26. Bi Xiongwei, He Wanquan, Tian Jiajin, Zhang Qingyou,and Cai Qun. Analysis of Multi-Wavelength Variation Periods of the Quasar 3C 273 // Astron. Res. Technol. – 2012. – Vol. 9, No. 4. – P. 339–347.27. Mao Li-Sheng. A Possible Periodicity in the Radio LightCurves of 3C 120 // Astron. Res. Technol. – 2007. – Vol. 4, No. 4. – P. 307–312.28. Белоконь Е. Т. 3C 120: связь оптической переменности со сверхсветовыми компонентами миллисекундной радиоструктуры // Астрофизика. – 1987. – Т. 27, № 3. –С. 429–446.29. Вольвач А. Е., Кутькин А. М., Вольвач Л. Н., Ларионов М. Г., Лахтеенмаки А., Торникоски М., Ниеппола Е., Тамми Дж., Саволаинен П., Леон-Таварес Дж., Аллер М. Ф., Аллер Х. Д. Результаты долговременного мониторинга 3С 273 в широком диапазоне длин волн //Астрономический журнал. – 2013. – Т. 90, № 1. –С. 40–52.30. Dong Futong, Zhang Zuojing, Mao Lisheng, Zhang Xiong,Zheng Yonggang, and Tang Ling. Wavelet Analysis of the Variability Periodicity Data of Quasar 3C 345 // Acta Astronomica Sinica. – 2010. – Vol. 51, No. 2. – P. 117–126.31. Qian Shan-Jie, Witzel A., Zensus J. A., Krichbaum T. P.,Britzen S., Zhang Xi-Zhen. Periodicity of the ejection of superluminal components in 3C 345 // Res. Astron. Astrophys. – 2009. – Vol. 9, Is. 2 – P. 137–150. DOI: 10.1088/1674-4527/9/2/00332. Klare J., Zensus J. A., Lobanov A. P., Ros E., Krichbaum T. P., and Witzel A. Quasi-Periodic Changes in the Parsec-Scale Jet of 3C 345 // J. Romney and M. Reid, eds. In: Future Directions in High Resolution Astronomy: The10th Anniversary of the VLBA, ASP: Conf. Proc. – San Francisco, USA: Astronomical Society of the Pacific. –2005. – Vol. 340. – P. 40.33. Бабаджанянц М. К., Белоконь Е. Т. Свойства оптической переменности квазара 3C 345 // Астрофизика. –1984. – Т. 21, Вып. 2. – С. 217–232.34. Volvach A. E., Volvach L. N., Larionov M. G., Aller H. D, .Aller M. F., Yurovskiy Yu. Yu., and Ryabov M. I. Flux density evolution of the sources 3C 273, 3C 279 and 3C 454.3 at the frequencies 102 MHz – 36.8 GHz // Astron. Astrophys. Trans. – 2006. – Vol. 25, No. 5–6. – P. 385–391. DOI: 10.1080/1055679060113505935. Qian Shan-Jie, Kudryavtseva N. A., Britzen S., Krichbaum T. P., Gao Long, Witzel A., Zensus J. A., Aller M. F., Aller H. D., and Zhang Xi-Zhen. A Possible Periodicity in the Radio Light Curves of 3C 454.3 // Chinese J. Astron. Astrophys. – 2006. – Vol. 7, No. 3. – P. 364–374. DOI:10.1088/1009-9271/7/3/0536. Kelly B. C., Hughes P. A., Aller H. D., and Aller M. F. The Cross-Wavelet Transform and Analysis of Quasi-PeriodicBehavior in the Pearson-Readhead VLBI Survey Sources // Astrophys. J. – 2003. – Vol. 591, No. 2. – P. 695–714. DOI: 10.1086/37551137. Weizhao Shi, Xiang Liu, and Huagang Song. A new model for the periodic outbursts of the BL Lac object OJ287 // Astrophys. Space Sci. – 2007. – Vol. 310, Is. 1. – P. 59–63. DOI: 10.1007/s10509-007-9413-z38. Hughes P. A., Aller H. D., and Aller M. F. Extraordinary Activity in the BL Lacertae Object OJ 287 // Astrophys. J. – 1998. – Vol. 503, No. 2. – P. 662–673. DOI:10.1086/30601439. Ishida T., Fujisawa K., Kino M., and Niinuma K. A shortterm flare on a time scale of 20 days in the BL Lac object OT 081 // In: 11th European VLBI Network Symposium & Users Meeting, Bordeaux, France, October 9-12, 2012: Proc. symp. – Proceedings of Science. – 2012. – id. 101.40. Humrickhouse C. and Webb J. R. Wavelet Analysis of Microvariability in Blazars 0716+714, ON231 and BL Lac // Journal of the Southeastern Association for Research in Astronomy. – 2008. – Vol. 2. – P. 23–29.41. Guo Y. C., Hu S. M., Xu C., Liu C. Y., Chen X., Guo D. F., Meng F. Y., Xu M. T., and Xu J. Q. Long-term optical and radio variability of BL Lacertae // New Astron. – 2015. –Vol. 36. – P. 9–18. DOI: 10.1016/j.newast.2014.09.01142. Kudryavtseva N. A. and Pyatunina T. B. A search for periodicity in the light curves of selected blazars // Astron. Rep. – 2006. – Vol. 50, Is. 1. – P. 1–11. DOI: 10.1134/S106377290601001X43. Barbieri C., Vio R., Cappellaro E, and Turrano M. Theoptical variability of the quasar 3C 446 // Astrophys. J. –1990. – Vol. 359. – P. 63–66. DOI: 10.1086/16903344. Lomb N. R. Least-squares frequency analysis of unequally spaced data // Astrophys. Space Sci. – 1976. – Vol. 39, Is. 2. – P. 447–462. DOI: 10.1007/BF0064834345. Scargle J. D. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data // Astrophys. J. – 1982. – Vol. 263. – P. 835–853. DOI: 10.1086/16055446. Hao Jing Zhang, Gang Zhao, and Xiong Zhang. The periodicityof 3C 273’s radio light curve at 15 GHz found bythe wavelet method // Science China Physics, Mechanicsand Astronomy. – 2010. – Vol. 53, Is. 1. – P. 252–255.47. Huai-Zhen Li, Guang-Zhong Xie, Shu-Bai Zhou, Hong-Tao Liu, Guang-Wei Cha, Li Ma, and Li-Sheng Mao. Periodicity Analysis of the Light Curve of 3C 454.3 // Chin. J. Astron. Astrophys. – 2006. – Vol. 6, No. 4. – P. 421–430. DOI: 10.1088/1009-9271/6/4/0448. Xu Yun-bing, Zhang Hao-Jing, and Wang Li-heng. A Study of the Light Curve Period of BL Lac OJ 287 // Journal of Yunnan Normal University (Natural Sciences Edition). –2010. – Vol. 4. – P. 1–4.49. Zhang X., Xie G. Z., and Bai J. M. A historical light curve of 3C 345 and its periodic analysis // Astron. Astrophys. –1998. – Vol. 330. – P. 469–473.50. Zhang Hao-Jing and Zhang Xiong. A study of the lightcurve periodic behavior of BL Lac object S5 0716+714 // Acta Physica Sinica. – 2007. – Vol. 56, Is. 7. – P. 4305–4311.51. Mordvinov A. V. Prediction of monthly indices of solar activity F10.7 on the basis of a multiplicative autoregression model // Byulletin Solnechnye Dannye Akademii Nauk USSR. – 1986. – No. 1985/12. – P. 67–73.52. Liu Si-Qing, Zhong Qiu-Zhen, Wen Jing, and Dou Xian-Kang. Modeling Research of the 27-day Forecast of 10.7 cm Solar Radio Flux (I) // Chin. Astron. Astrophys. – 2010. –Vol. 34, Is. 3. – P. 305–315. DOI:10.1016/j.chinastron.2010.07.00653. Kane R. P. and Trivedi N. B. Periodicities in sunspot numbers // J. Geomagn. Geoelectricity. – 1985. – Vol. 37,No. 12. – P. 1071–1085.54. Vaseghi Saeed V. Advanced digital signal processing and noise reduction. – Chichester, England: John Wiley & Sons Ltd., 2006. – 480 p.55. Marple S. L. Digital spectral analysis with applications. – Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1987. – 512 p.56. Makhoul J. Linear prediction: A tutorial review // Proc.IEEE. – 1975. – Vol. 63, Is. 4. – P. 561–580. DOI: 10.1109/PROC.1975.979257. Шахтарин Б. И., Ковригин В. А. Методы спектрального оценивания случайных процессов. – М.: Гелиос АРВ,2005. – 248 с.58. Kay S. M. Modern spectral estimation: Theory and application.– Englewood Cliffs, N.J.: Prentice-Hall, Inc.,1988. – 543 p.59. Rissanen J. A Universal Prior for Integers and Estimation by Minimum Description Length // Ann. Statist. – 1983. –Vol. 11, No. 2. – P. 416–431. DOI: 10.1214/aos/117634615060. Ulrych T. J. and Clayton R. W. Time series modelling and maximum entropy // Phys. Earth Planet. Inter. – 1976. –Vol. 12, Iss. 2–3. – P. 188–200. DOI: 10.1016/0031-9201(76)90047-961. Tufts D. and Kumaresan R. Singular value decomposition and improved frequency estimation using linear prediction //IEEE Trans. Acoust. Speech Signal Process. – 1982. – Vol. 30, Is. 4. – P. 671–675. DOI: 10.1109/TASSP.1982.116392762. Uike M., Uchiyama T., and Minamitani H. Comparison of linear prediction methods based on singular value decomposition // J. Magn. Reson. – 1992. – Vol. 99, Is. 2. –P. 363–371. DOI: 10.1016/0022-2364(92)90188-D63. Lister M. L., Cohen M. H., Homan D. C., Kadler M.,Kellermann K. I., Kovalev Y. Y., Ros E., Savolainen T., and Zensus J. A. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysisof a Complete Sample of Blazar Jets // Astron. J. – 2009. – Vol. 138, Is. 6. – P. 1874–1892. DOI: 10.1088/0004-6256/138/6/187464. Сухарев А. Л., Рябов М. И., Донских А. И. Прогнозирование изменений плотности потока радиоизлучения внегалактических источников // Астрофизика. – 2016. –Т. 59, № 2. – C. 245–259.65. Donskykh G. I., Ryabov M. I., Sukharev A. L., and Aller M. Using the methods of wavelet analysis and singular spectrum analysis in the study of radio source BL Lac // Odessa Astronomical Publications. – 2014. – Vol. 27, Is. 1. –P. 69–70. УДК 524.7; 524.8PACS numbers: 95.75.Wx, 95.85.Bh Предмет і мета роботи: Досліджується змінність щільностей потоків випромінювання позагалактичних радіоджерел (3C 273, 3C 120, 3C 345, 3C 446, 3C 454.3, OJ 287, OT 081, BL Lac, DA 55, CTA 102) за даними багаторічного (1965–2011 рр.) моніторингу на частотах 14.5, 8, 4.8 ГГц, виконаного на 26-метровому телескопі Мічиганського університету (UMRAO). Метою роботи є складання каталогу значень і властивостей квазіперіодів зміни щільностей потоків радіовипромінювання досліджуваних радіоджерел, а також прогнозування на його основі змін щільності потоку досліджуваних радіоджерел після 2011 року на частоті 14.5 ГГц. Методи і методологія: З застосуванням вейвлет-аналізу, смуговоїй фільтрації та аналізу сингулярного спектру (“Гусениця”-SSA) отримано інформацію про значення та властивості квазіперіодів зміни щільностей потоків радіовипромінювання окремо для довготривалої та швидкої складових змінності. З використанням цих значень вперше виконано прогнозування двома методами: гармонійним методом та методом авторегресійного лінійного передбачення.Результати: Побудовано каталог квазіперіодичних складових змінностей щільності потоків 10 радіоджерел, які віддзеркалюють динаміку їх активності. Показано, що змінність позагалактичних радіоджерел формується за рахунок додавання квазіперіодичних складових на різних часових масштабах. Отримані результати прогнозів показали добру відповідність реальним спостереженням з бази даних MOJAVE. Авторегресійний метод є кращим для короткострокового прогнозування зміни щільностей потоків у радіоджерел зі складним характером змінності.Висновок: Надані значення і властивості квазіперіодів призначені для побудови теоретичних моделей швидкої та довготривалої змінності позагалактичних радіоджерел. Можливість прогнозування щільності потоків позагалактичних радіоджерел на основі даних щодо їх змінності дозволяє здійснювати ефективне планування програм спостережень.Ключові слова: позагалактичні радіоджерела, квазіперіод, змінність радіовипромінювання, вейвлет-аналіз, “Гусениця”-SSA, прогнозСтаття надійшла до редакції 12.07.2016Radio phys. radio astron. 2016, 21(3): 161-188СПИСОК ЛІТЕРАТУРИ1. Wenger M., Ochsenbein F., Egre D., Dubois P., BonnarelF., Borde S., Genova F., Jasniewicz G., Laloë S., Lesteven S., and Monier R. The SIMBAD astronomical database. The CDS reference database for astronomical objects // Astron. Astrophys. Suppl. – 2000. – Vol. 143. – P. 9–22. DOI: 10.1051/aas:20003322. Комберг Б. В., Репин С. В. Звездные острова Вселеннойс релятивистскими “гейзерами” в центрах (Галактики на “рабочем столе”). – М.: Янус-К, 2014. – 312 с.3. Rieger F. M. Periodic variability and binary black hole systems in blazars // AIP Conf. Proc. – 2005. – Vol. 745. –P. 487–492. DOI: 10.1063/1.18784504. De Vries W. H., Becker R. H., White R. L., and Loomis C. Structure Function Analysis of Long-Term Quasar Variability // Astron. J. – 2005. – Vol. 129, No. 2. –P. 615–629.5. Cowperthwaite P. S. and Reynolds C. S. The Central Engine Structure Of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk // Astrophys. J. Lett. –2012. – Vol. 752, No. 2. – id. L21. DOI: 10.1088/2041-8205/752/2/L216. Marscher A. P. Relativistic Jets in Active Galactic Nuclei // AIP Conf. Proc. – 2006. – Vol. 856. – P. 1–22. DOI:10.1063/1.23563817. Mizuno Y., Lyubarsky Yu., Nishikawa K.-I., and Hardee P. E. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. III. Rotating RelativisticJets // Astrophys. J. – 2012. – Vol. 757, No. 1. –id. 16. DOI: 10.1088/0004-637X/757/1/168. King A. R., Pringle J. E., West R. G., and Livio M. Variabilityin black hole accretion discs // Mon. Not. R. Astron. Soc. – 2004. – Vol. 348, Is. 1. – P. 111–122. DOI: 10.1111/j.1365-2966.2004.07322.x9. Matsumoto R., Kato S., and Honma F. Chapter 16. NonlinearPulsation in the Transonic Region of Geometrically Thin Accretion Disks / In: Theory of Accretion Disks / F. Meyer, W. J. Duschl, J. Frank, and E. Meyer-Hofmeister,eds. – Netherlands: Springer, 1989. – P. 167–172. DOI:10.1007/978-94-009-1037-9_1610. Fan J. H., Liu Y., Yuan Y. H., Wang H. G., Wang Y. X., Gupta A. C., Yang J. H., Li J., Zhou J. L., Xu S. X., Chen J. L., Liu F., and Li Y. Z. Radio variability properties of a sample of 168 radio sources: Periodicity analysis // Chin. J. Astron. Astrophys. – 2006. – Vol. 6, Suppl. 2. –P. 333–336.11. Hovatta T., Lehto H. J., and Tornikoski M. Wavelet analysis of a large sample of AGN at high radio frequencies // Astron. Astrophys. – 2008. – Vol. 488, No. 3. – P. 897–903. DOI: 10.1051/0004-6361:20081020012. Hughes P. A., Aller H. D., and Aller M. F. The University of Michigan radio astronomy data base. I - Structure function analysis and the relation between BL Lacertae objectsand quasi-stellar objects // Astrophys. J. – 1992. –Vol. 396, No. 2. – P. 469–486. DOI: 10.1086/17173413. Aller H. D., Aller M. F., Latimer G. E., and Hodge P. E. Spectra and Linear Polarizations of Extragalactic Variable Sources at Centimeter Wavelengths // Astrophys. J. Suppl.Ser. – 1985. – Vol. 59. – P. 513–768. DOI: 10.1086/19108314. Гайдышев И. Анализ и обработка данных: Специальный справочник. – Спб: Питер, 2001. – 752 с.15. Давыдов А. В. Цифровая обработка сигналов: Тематические лекции. – Екатеринбург: УГГУ, ИГиГ, кафедра геоинформатики, 2007–2010.16. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в Matlab. – М.: ДМК Пресс, 2008. – 448 с.17. Божокин С. В. Непрерывное вейвлет-преобразование и точно решаемая модель нестационарных сигналов // Журнал технической физики. – 2012. – Т. 82, Вып. 7. –С. 8–13.18. Mallat S. A. Wavelet Tour of Signal Processing. – San Diego, CA: Academic Press, 1998.19. Torrence C. and Compo G. P. A practical guide to waveletanalysis // Bul. Amer. Met. Soc. – 1998. – Vol. 79, No. 1. – P. 61–78. DOI: 10.1175/1520-0477(1998)07960;0061:apgtwa62;2.0.co;220. Астафьева Н. М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. – 1996. –Т. 166, № 11. – С. 1145–1170.21. Александров Ф. И., Голяндина Н. Э. Автоматизация выделения трендовых и периодических составляющих временного ряда в рамках метода “Гусеница”-SSA // Exponenta Pro. Математика в приложениях. – 2004. –№ 3–4. – С. 54–61.22. Голяндина Н. Э. Метод “Гусеница”-SSA: анализ временных рядов (учебное пособие). – Спб.: Из-во Санкт-Петербургского университета, 2004. – 74 с.23. Чистякова А. А., Шамша Б. В. Идентификация структуры нестационарного временного ряда при помощи метода сингулярного спектрального анализа // Радіоелектронні і комп’ютерні системи. – 2011. – № 4 (52). –С. 105–111.24. Шиманов С. Н., Цимбал В. А., Прасолов В. А., Франков С. В. Адаптивная цифровая фильтрация сигналов на фоне “белого” гауссовского шума на основе сингулярного разложения в линейных многообразиях // Известия Тульского государственного университета. Технические науки. – Тула: Из-во ТулГУ, 2015. – Вып. 11. – С. 128–136.25. Abraham Z. and Romero G. E. Beaming and precessionin the inner jet of 3C 273 // Astron. Astrophys. – 1999. –Vol. 344, No. 1. – P. 61–67.26. Bi Xiongwei, He Wanquan, Tian Jiajin, Zhang Qingyou,and Cai Qun. Analysis of Multi-Wavelength Variation Periods of the Quasar 3C 273 // Astron. Res. Technol. – 2012. – Vol. 9, No. 4. – P. 339–347.27. Mao Li-Sheng. A Possible Periodicity in the Radio LightCurves of 3C 120 // Astron. Res. Technol. – 2007. – Vol. 4, No. 4. – P. 307–312.28. Белоконь Е. Т. 3C 120: связь оптической переменности со сверхсветовыми компонентами миллисекундной радиоструктуры // Астрофизика. – 1987. – Т. 27, № 3. –С. 429–446.29. Вольвач А. Е., Кутькин А. М., Вольвач Л. Н., Ларионов М. Г., Лахтеенмаки А., Торникоски М., Ниеппола Е., Тамми Дж., Саволаинен П., Леон-Таварес Дж., Аллер М. Ф., Аллер Х. Д. Результаты долговременного мониторинга 3С 273 в широком диапазоне длин волн //Астрономический журнал. – 2013. – Т. 90, № 1. –С. 40–52.30. Dong Futong, Zhang Zuojing, Mao Lisheng, Zhang Xiong,Zheng Yonggang, and Tang Ling. Wavelet Analysis of the Variability Periodicity Data of Quasar 3C 345 // Acta Astronomica Sinica. – 2010. – Vol. 51, No. 2. – P. 117–126.31. Qian Shan-Jie, Witzel A., Zensus J. A., Krichbaum T. P.,Britzen S., Zhang Xi-Zhen. Periodicity of the ejection of superluminal components in 3C 345 // Res. Astron. Astrophys. – 2009. – Vol. 9, Is. 2 – P. 137–150. DOI: 10.1088/1674-4527/9/2/00332. Klare J., Zensus J. A., Lobanov A. P., Ros E., Krichbaum T. P., and Witzel A. Quasi-Periodic Changes in the Parsec-Scale Jet of 3C 345 // J. Romney and M. Reid, eds. In: Future Directions in High Resolution Astronomy: The10th Anniversary of the VLBA, ASP: Conf. Proc. – San Francisco, USA: Astronomical Society of the Pacific. –2005. – Vol. 340. – P. 40.33. Бабаджанянц М. К., Белоконь Е. Т. Свойства оптической переменности квазара 3C 345 // Астрофизика. –1984. – Т. 21, Вып. 2. – С. 217–232.34. Volvach A. E., Volvach L. N., Larionov M. G., Aller H. D, .Aller M. F., Yurovskiy Yu. Yu., and Ryabov M. I. Flux density evolution of the sources 3C 273, 3C 279 and 3C 454.3 at the frequencies 102 MHz – 36.8 GHz // Astron. Astrophys. Trans. – 2006. – Vol. 25, No. 5–6. – P. 385–391. DOI: 10.1080/1055679060113505935. Qian Shan-Jie, Kudryavtseva N. A., Britzen S., Krichbaum T. P., Gao Long, Witzel A., Zensus J. A., Aller M. F., Aller H. D., and Zhang Xi-Zhen. A Possible Periodicity in the Radio Light Curves of 3C 454.3 // Chinese J. Astron. Astrophys. – 2006. – Vol. 7, No. 3. – P. 364–374. DOI:10.1088/1009-9271/7/3/0536. Kelly B. C., Hughes P. A., Aller H. D., and Aller M. F. The Cross-Wavelet Transform and Analysis of Quasi-PeriodicBehavior in the Pearson-Readhead VLBI Survey Sources // Astrophys. J. – 2003. – Vol. 591, No. 2. – P. 695–714. DOI: 10.1086/37551137. Weizhao Shi, Xiang Liu, and Huagang Song. A new model for the periodic outbursts of the BL Lac object OJ287 // Astrophys. Space Sci. – 2007. – Vol. 310, Is. 1. – P. 59–63. DOI: 10.1007/s10509-007-9413-z38. Hughes P. A., Aller H. D., and Aller M. F. Extraordinary Activity in the BL Lacertae Object OJ 287 // Astrophys. J. – 1998. – Vol. 503, No. 2. – P. 662–673. DOI:10.1086/30601439. Ishida T., Fujisawa K., Kino M., and Niinuma K. A shortterm flare on a time scale of 20 days in the BL Lac object OT 081 // In: 11th European VLBI Network Symposium & Users Meeting, Bordeaux, France, October 9-12, 2012: Proc. symp. – Proceedings of Science. – 2012. – id. 101.40. Humrickhouse C. and Webb J. R. Wavelet Analysis of Microvariability in Blazars 0716+714, ON231 and BL Lac // Journal of the Southeastern Association for Research in Astronomy. – 2008. – Vol. 2. – P. 23–29.41. Guo Y. C., Hu S. M., Xu C., Liu C. Y., Chen X., Guo D. F., Meng F. Y., Xu M. T., and Xu J. Q. Long-term optical and radio variability of BL Lacertae // New Astron. – 2015. –Vol. 36. – P. 9–18. DOI: 10.1016/j.newast.2014.09.01142. Kudryavtseva N. A. and Pyatunina T. B. A search for periodicity in the light curves of selected blazars // Astron. Rep. – 2006. – Vol. 50, Is. 1. – P. 1–11. DOI: 10.1134/S106377290601001X43. Barbieri C., Vio R., Cappellaro E, and Turrano M. Theoptical variability of the quasar 3C 446 // Astrophys. J. –1990. – Vol. 359. – P. 63–66. DOI: 10.1086/16903344. Lomb N. R. Least-squares frequency analysis of unequally spaced data // Astrophys. Space Sci. – 1976. – Vol. 39, Is. 2. – P. 447–462. DOI: 10.1007/BF0064834345. Scargle J. D. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data // Astrophys. J. – 1982. – Vol. 263. – P. 835–853. DOI: 10.1086/16055446. Hao Jing Zhang, Gang Zhao, and Xiong Zhang. The periodicityof 3C 273’s radio light curve at 15 GHz found bythe wavelet method // Science China Physics, Mechanicsand Astronomy. – 2010. – Vol. 53, Is. 1. – P. 252–255.47. Huai-Zhen Li, Guang-Zhong Xie, Shu-Bai Zhou, Hong-Tao Liu, Guang-Wei Cha, Li Ma, and Li-Sheng Mao. Periodicity Analysis of the Light Curve of 3C 454.3 // Chin. J. Astron. Astrophys. – 2006. – Vol. 6, No. 4. – P. 421–430. DOI: 10.1088/1009-9271/6/4/0448. Xu Yun-bing, Zhang Hao-Jing, and Wang Li-heng. A Study of the Light Curve Period of BL Lac OJ 287 // Journal of Yunnan Normal University (Natural Sciences Edition). –2010. – Vol. 4. – P. 1–4.49. Zhang X., Xie G. Z., and Bai J. M. A historical light curve of 3C 345 and its periodic analysis // Astron. Astrophys. –1998. – Vol. 330. – P. 469–473.50. Zhang Hao-Jing and Zhang Xiong. A study of the lightcurve periodic behavior of BL Lac object S5 0716+714 // Acta Physica Sinica. – 2007. – Vol. 56, Is. 7. – P. 4305–4311.51. Mordvinov A. V. Prediction of monthly indices of solar activity F10.7 on the basis of a multiplicative autoregression model // Byulletin Solnechnye Dannye Akademii Nauk USSR. – 1986. – No. 1985/12. – P. 67–73.52. Liu Si-Qing, Zhong Qiu-Zhen, Wen Jing, and Dou Xian-Kang. Modeling Research of the 27-day Forecast of 10.7 cm Solar Radio Flux (I) // Chin. Astron. Astrophys. – 2010. –Vol. 34, Is. 3. – P. 305–315. DOI:10.1016/j.chinastron.2010.07.00653. Kane R. P. and Trivedi N. B. Periodicities in sunspot numbers // J. Geomagn. Geoelectricity. – 1985. – Vol. 37,No. 12. – P. 1071–1085.54. Vaseghi Saeed V. Advanced digital signal processing and noise reduction. – Chichester, England: John Wiley & Sons Ltd., 2006. – 480 p.55. Marple S. L. Digital spectral analysis with applications. – Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1987. – 512 p.56. Makhoul J. Linear prediction: A tutorial review // Proc.IEEE. – 1975. – Vol. 63, Is. 4. – P. 561–580. DOI: 10.1109/PROC.1975.979257. Шахтарин Б. И., Ковригин В. А. Методы спектрального оценивания случайных процессов. – М.: Гелиос АРВ,2005. – 248 с.58. Kay S. M. Modern spectral estimation: Theory and application.– Englewood Cliffs, N.J.: Prentice-Hall, Inc.,1988. – 543 p.59. Rissanen J. A Universal Prior for Integers and Estimation by Minimum Description Length // Ann. Statist. – 1983. –Vol. 11, No. 2. – P. 416–431. DOI: 10.1214/aos/117634615060. Ulrych T. J. and Clayton R. W. Time series modelling and maximum entropy // Phys. Earth Planet. Inter. – 1976. –Vol. 12, Iss. 2–3. – P. 188–200. DOI: 10.1016/0031-9201(76)90047-961. Tufts D. and Kumaresan R. Singular value decomposition and improved frequency estimation using linear prediction //IEEE Trans. Acoust. Speech Signal Process. – 1982. – Vol. 30, Is. 4. – P. 671–675. DOI: 10.1109/TASSP.1982.116392762. Uike M., Uchiyama T., and Minamitani H. Comparison of linear prediction methods based on singular value decomposition // J. Magn. Reson. – 1992. – Vol. 99, Is. 2. –P. 363–371. DOI: 10.1016/0022-2364(92)90188-D63. Lister M. L., Cohen M. H., Homan D. C., Kadler M.,Kellermann K. I., Kovalev Y. Y., Ros E., Savolainen T., and Zensus J. A. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysisof a Complete Sample of Blazar Jets // Astron. J. – 2009. – Vol. 138, Is. 6. – P. 1874–1892. DOI: 10.1088/0004-6256/138/6/187464. Сухарев А. Л., Рябов М. И., Донских А. И. Прогнозирование изменений плотности потока радиоизлучения внегалактических источников // Астрофизика. – 2016. –Т. 59, № 2. – C. 245–259.65. Donskykh G. I., Ryabov M. I., Sukharev A. L., and Aller M. Using the methods of wavelet analysis and singular spectrum analysis in the study of radio source BL Lac // Odessa Astronomical Publications. – 2014. – Vol. 27, Is. 1. –P. 69–70. Видавничий дім «Академперіодика» 2016-09-27 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1240 10.15407/rpra21.03.161 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 21, No 3 (2016); 161 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 21, No 3 (2016); 161 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 21, No 3 (2016); 161 2415-7007 1027-9636 10.15407/rpra21.03 ru http://rpra-journal.org.ua/index.php/ra/article/view/1240/876 Copyright (c) 2016 RADIO PHYSICS AND RADIO ASTRONOMY |