STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH

PACS number: 94.20.VvPurpose: An experimental study of signatures of traveling ionospheric disturbances (TID) observed in diurnal-seasonal variations of the parameters of probe HF signals propagating on theoblique single-hop RWM–LFO radio path, derived from the yearlong monitoring data.Design/method...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Reznychenko, A. I., Koloskov, A. V., Sopin, A. O., Yampolski, Y. M.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім «Академперіодика» 2020
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1332
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1332
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2020-06-09T10:20:32Z
collection OJS
language Russian
topic traveling ionospheric disturbances
quasiperiodic variations
Doppler frequency shift
radio path
period
amplitude
probability of detection
spellingShingle traveling ionospheric disturbances
quasiperiodic variations
Doppler frequency shift
radio path
period
amplitude
probability of detection
Reznychenko, A. I.
Koloskov, A. V.
Sopin, A. O.
Yampolski, Y. M.
STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
topic_facet traveling ionospheric disturbances
quasiperiodic variations
Doppler frequency shift
radio path
period
amplitude
probability of detection
перемещающиеся ионосферные возмущения
квазипериодические вариации
доплеровское смещение частоты
радиолиния
период
амплитуда
вероятность наблюдения
рухомі іоносферні збурення
квазіперіодичні варіації
доплерівське зміщення частоти
радіолінія
період
амплітуда
імовірність спостереження
format Article
author Reznychenko, A. I.
Koloskov, A. V.
Sopin, A. O.
Yampolski, Y. M.
author_facet Reznychenko, A. I.
Koloskov, A. V.
Sopin, A. O.
Yampolski, Y. M.
author_sort Reznychenko, A. I.
title STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
title_short STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
title_full STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
title_fullStr STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
title_full_unstemmed STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH
title_sort statistic of seasonal and diurnal variations of doppler frequency shift of hf signals at mid-latitude radio path
title_alt СТАТИСТИКА СЕЗОННЫХ И СУТОЧНЫХ ВАРИАЦИЙ ДОПЛЕРОВСКОГО СМЕЩЕНИЯ ЧАСТОТЫ ВЧ СИГНАЛОВ НА СРЕДНЕШИРОТНОЙ РАДИОТРАССЕ
СТАТИСТИКА СЕЗОННИХ І ДОБОВИХ ВАРІАЦІЙ ДОПЛЕРІВСЬКОГО ЗМІЩЕННЯ ЧАСТОТИ ВЧ СИГНАЛІВ НА СЕРЕДНЬОШИРОТНІЙ РАДІОЛІНІЇ
description PACS number: 94.20.VvPurpose: An experimental study of signatures of traveling ionospheric disturbances (TID) observed in diurnal-seasonal variations of the parameters of probe HF signals propagating on theoblique single-hop RWM–LFO radio path, derived from the yearlong monitoring data.Design/methodology/approach: A long term digital recording of the HF radio signals’ waveforms of the Exact time and frequency service station (RWM, Moscow, Russia) was made at the Low Frequency Observatory of the IRA NAS–Ukraine (LFO, Martove, Kharkіv reg., Ukraine). The Doppler frequency shift (DFS) was derived from the power spectra of the recorded signals. The DFS quasiperiodic variations were interpreted as the result of passage of traveling ionospheric disturbances associated with the acoustic-gravity waves (AGW) at the height of the F-layer of ionosphere. The value of the DFS variation period was determined as the sum of the time intervals between neighboring zero crossing of two consecutive half-periods, and the amplitude was determined as the range of variations. The cases of F region shielding by the underlying ionospheric layers Es and E were taken into account as well.Findings: The data on the periods and amplitudes of the DFS variations were used for statistical analysis. The probability of DFS variations’ observation was determined for each month. This value lies within 81 to 91 % in winter and spring and decreases to within 52 to 80 % in summer and autumn seasons. It is shown that the rise of electron density in the lower layers of the ionosphere Es and E makes it difficult to detect TIDs in the F region. This results in a significant underestimation of the probability of observation in the summer and partially in the spring-autumn seasons. The diurnal-seasonal dependences of the probability of DFS observation, as well as their periods and amplitudes were determined. The forms of daily distributions of both amplitude and period are generally similar for all the seasons. They show two peaks, one in the morning and the second one in the evening, and the minimum in the afternoon. As respects the seasonal distributions of periods and amplitudes, in summer, a higher median value of period and more even distribution of amplitude are observed. In addition, we evaluated the influence of the level of geomagnetic storminess on the characteristics of DFS variations. It was determined that a rise of geomagnetic activity (K-index ≥2) is accompanied by decreasing of the observation probability and increasing of the amplitudes and periods of DFS variations.Conclusions: The techniques developed for the analysis of the data of Doppler ionospheric sounding by non-special type HF signals can be used for diagnostics and analysis of the ionospheric disturbances.Key words: traveling ionospheric disturbances, quasiperiodic variations, Doppler frequency shift, radio path, period, amplitude, probability of detectionManuscript submitted  11.12.2019Radio phys. radio astron. 2020, 25(2): 118-135REFERENCES1. GOSSARD, E. and HOOKE, W., 1978. Waves in the atmosphere. Moscow, Russia: Mir Publ. (in Russian).2. HOOKE, W. H., 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys. vol. 30, is. 5, pp. 795–823. DOI: https://doi.org/10.1016/S0021-9169(68)80033-93. NARAYANAN, V. L., SHIOKAWA, K., OTSUKA, Y. and NEUDEGG, D., 2018 On the Role of Thermospheric Winds and Sporadic E Layers in the Formation and Evolution of Electrified MSTIDs in Geomagnetic Conjugate Regions. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 6957–6980. DOI: https://doi.org/10.1029/2018JA0252614. MAKELA, J. J. and OTSUKA, Y., 2012. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci. Rev. vol. 168, is. 1-4, pp. 419–440. DOI: https://doi.org/10.1007/s11214-011-9816-65. DULY, T. M., HUBA J. D. and MAKELA, J. J., 2014. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. vol. 119, no. 8, pp. 6745–6757. DOI: https://doi.org/10.1002/2014JA0201466. AFRAIMOVICH, E. L., EDEMSKIY, I. K., LEONOVICH, A. S., LEONOVICH, L. A., VOEYKOV, S. V. and YASYUKEVICH, Y. V., 2009. MHD nature of night-time MSTIDs excited by solar terminator. Geophys. Res. Lett. vol. 36, is. 15, id. L15106. DOI: https://doi.org/10.1029/2009GL0398037. MACDOUGALL, J. W. and JAYACHANDRAN, P. T., 2011. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J. Atmos. Sol. Terr. Phys. vol. 73, is. 17-18, pp. 2437–2443. DOI: https://doi.org/10.1016/j.jastp.2011.10.0098. MATSUMURA, M., SAITO, A., IYEMORI, T., SHINAGAWA, H., TSUGAWA, T., OTSUKA, Y., NISHIOKA, M. and CHEN, C. H., 2011. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space. vol. 63, is. 7, pp. 885–889. DOI: https://doi.org/10.5047/eps.2011.07.0159. HAO, Y.-Q., XIAO, Z. and ZHANG, D.-H., 2006. Responses of the ionosphere to the great Sumatra earthquake and volcanic eruption of Pinatubo. Chin. Phys. Lett. vol. 23, is. 7, pp. 1955–1957. DOI: https://doi.org/10.1088/0256-307X/23/7/08210. HINES, C. O., 1967. On the nature of travelling ionospheric disturbances launched by low‐altitude nuclear explosions. J. Geophys. Res. vol. 72, is. 7, pp. 1877–1882. DOI: https://doi.org/10.1029/JZ072i007p0187711. LIN, C. C. H., SHEN, M.‐H., CHOU, M.‐Y., CHEN, C.‐H., YUE, J., CHEN, P.‐C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL07419212. LIU, H., DING, F., YUE, X., ZHAO, B., SONG, Q., WAN, W., NING, B. and ZHANG, K., 2018. Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China's Long March 4B Rocket. J. Geophys. Res. Space Phys. vol. 123, is. 12, pp. 10319–10330. DOI: https://doi.org/10.1029/2018JA02609613. HUANG, Y.-N, CHENG, K. and CHEN, S.-W., 1985. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. vol. 20, is. 4, pp. 897–906. DOI: https://doi.org/10.1029/RS020i004p0089714. GARCIA, R. F., DOORNBOS, E., BRUINSMA, S. and HEBERT, H., 2014. Atmospheric gravity waves due to the Tohoku‐Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. vol. 119, is. 8, pp. 4498–4506. DOI: https://doi.org/10.1002/2013JD02112015. FRITTS, D. C. and ALEXANDER, M. J., 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. vol. 41, is. 1, id. 1003. DOI: https://doi.org/10.1029/2001RG00010616. LAŠTOVIČKA, J., 2006. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. vol. 68, is. 3-5, pp. 479–497. DOI: https://doi.org/10.1016/j.jastp.2005.01.01817. HOCKE, K. and SCHLEGEL, K., 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. vol. 14, 1s. 9, pp. 917–940. DOI: https://doi.org/10.1007/s00585-996-0917-618. HARGREAVES, J. K., 1979. The Upper Atmosphere and Solar-terrestrial Relations: An Introduction to the Aerospace Environment. New York: Van Nostrand Reinhold.19. WALDOCK, J. A. and JONES, T. B., 1986. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. vol. 48, is. 3, pp. 245–260. DOI: https://doi.org/10.1016/0021-9169(86)90099-120. OINATS, A.V., NISHITANI, N., PONOMARENKO, P., BERNGARDT, O. I. and RATOVSKY, K. G., 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planet Space. vol. 68, is. 1, id. 8. DOI: https://doi.org/10.1186/s40623-016-0390-821. BOWMAN, G. G., 1990. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelect. vol. 42, is. 2, pp. 109–138. DOI: https://doi.org/10.5636/jgg.42.10922. PAZNUKHOV, V. V., GALUSHKO, V. G. and REINISCH, B. W., 2012. Digisonde observations of TIDs with frequency and angular sounding technique. Adv. Space Res. vol. 49, is. 4, pp. 700–710. DOI: https://doi.org/10.1016/j.asr.2011.11.01223. BARABASH, V. V., PANASENKO, S. V., AKSONOVA, K. D. and LISACHENKO, V. N., 2017. Characteristics of moving ionospheric disturbances over Ukraine and West Antarctica during the strong geospace storm according to data of vertical sounding and incoherent scattering. Ukrainian Antarctic Journal [online]. no. 16, pp. 113–122. (in Ukrainian). DOI: https://doi.org/10.33275/1727-7485.16.2017.69 [viewed 27 March 2020]. Available from: http://uaj.uac.gov.ua/index.php/uaj/article/download/69/33/24. WILLIAMS, P. J. S., 1989. Observations of Atmospheric Gravity Waves with Incoherent Scatter Radar. Adv. Space Res. vol. 9, is. 5, pp. 65–72. DOI: https://doi.org/10.1016/0273-1177(89)90342-625. PANASENKO, S.V., GONCHARENKO, L. P., ERICKSON, P. J., AKSONOVA, K. D. and DOMNIN, I. F., 2018. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. vol. 172, pp. 10–23. DOI: https://doi.org/10.1016/j.jastp.2018.03.00126. JONAH, O. F., PANASENKO S. V., AKSONOVA K. D., GONCHARENKO L. P., and COSTER A., 2018 Observations of traveling ionospheric disturbances at midlatitudes during geomagnetic storm of 1–3 September 2016. In: AGU Fall Meeting Abstracts. Washington D.C., USA, December 10-14, 2018. id. SA33C-3491. DOI: 10.13140/RG.2.2.23123.8400327. CHERNOGOR, L. F., PANASENKO. S. V., FROLOV. V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-428. MORTON, F. W. and ESSEX, E. A., 1978. Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique. J. Atmos. Terr. Phys. vol. 40, is. 10-11, pp. 1113–1122. DOI: https://doi.org/10.1016/0021-9169(78)90059-429. AFRAIMOVICH, E. L., KOSOGOROV, E. A., LESYUTA, O. S., USHAKOV, I. I. and YAKOVETS, A. F., 2001. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Ann. Geophys. vol. 19, is. 7, pp. 723–731. DOI: https://doi.org/10.5194/angeo-19-723-200130. CHEN, G., ZHOU, C., LIU, Y., ZHAO, J., TANG, Q., WANG, X. and, ZHAO, Z., 2019. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planet Space. vol. 71, id. 52. DOI: https://doi.org/10.1186/s40623-019-1031-931. SHIOKAWA, K., IHARA, C., OTSUKA, Y. and OGAWA, T., 2003. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. vol. 108, is. A1, id. 1052. DOI: https://doi.org/10.1029/2002JA00949132. HUANG, F., DOU, X., LEI, J., LIN, J., DING, F. and ZHONG, J., 2016. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res. Space. Phys. vol. 121, is. 9, pp. 8887–8899. DOI: https://doi.org/10.1002/2016JA02276033. DOMNIN, I. F., CHEPURNYY, Y. M., EMELYANOV, L. Y., CHERNYAEV, S. V., KONONENKO, A. F., KOTOV, D. V., BOGOMAZ O. V. and ISKRA, D. A., 2014. Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Radiophysics and Ionosphere [online]. no. 47(1089), pp 28–42. [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/299535724_Kharkiv_incoherent_scatter_facility34. ZALIZOVSKI, A. V., KASHCHEIEV, A. S., KASHCHEIEV, S. B., KOLOSKOV, A. V., LISACHENKO, V. N., PAZNUKHOV, V. V., PIKULIK, I., SOPIN, A. A. and YAMPOLSKI, Y. M., 2018. A prototype of a portable coherent ionosonde. Space Sci. Technol. vol. 24, no. 3, pp. 10–22. (in Russian). DOI: https://doi.org/10.15407/knit2018.03.01035. ZALIZOVSKI, A., YAMPOLSKI, Y., MISHIN, E., KOLOSKOV, A., PAZNUKHOV, V., KASHCHEYEV, S., SOPIN, A., AKSONOVA K. and ZANIMONSKY, E., 2019. AGW/TID over the Antarctic Peninsula and Eastern Europe as observerd by multiposition HF doppler and GNSS-TEC techniques. In: CEDAR-2019 Workshop. [online]. Santa Fe, NM, USA, 16-21 June 2019 [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/33423094036. GALUSHKO, V. G., PAZNUKHOV, V. V., SOPIN, A. A. and YAMPOLSKI, Y. M., 2016. Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. J. Geophys. Res. Space Phys. vol. 121, is. 4, pp. 3395–3409. DOI: https://doi.org/10.1002/2015JA02230237. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s1710229838. GALUSHKO, V. G., 1997. Frequency-and-Angular Sounding of the Iionosphere. Telecomm. Radio Eng. vol. 51, is. 6-7, pp. 1–6. DOI: https://doi.org/10.1615/TelecomRadEng.v51.i6-7.1039. GALUSHKO, V. G., KASCHEEV, A. S., PAZNUKHOV, V. V., YAMPOLSKI, Y. M. and REINISCH, B. W., 2008. Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves. Radio Sci. vol. 43, is. 4, id. RS4013. DOI: https://doi.org/10.1029/2007RS00373540. BELEY, V. S., GALUSHKO, V. G. and YAMPOLSKI, Y. M., 1995. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci.vol. 30, is. 6, pp. 1739–1752. DOI: https://doi.org/10.1029/95RS0199241. PIKULIK, I. I, KASHCHEYEV, S. B., GALUSHKO, V. G. and YAMPOLSKY, YU. M., 2003. HF-receiver Equipment for Frequency-and-Angular Sounding of the Ionosphere in Antarctica. Ukrainian Antarctic journal [online]. no. 1, pp. 61–69. (in Russian). [viewed 27 March 2020]. Available from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128125/08-Pikulin.pdf42. GALUSHKO, V. G., KASHCHEYEV, A. S., KASHCHEYEV, S. B., KOLOSKOV, A. V., PIKULIK, I. I., YAMPOLSKI, Y. M., LITVINOV, V. A., MILINEVSKY, G. P. and RAKUSA-SUSZCZEWSKI, S., 2007. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys. vol. 69, is. 4-5, pp. 403–410. DOI: https://doi.org/10.1016/j.jastp.2006.05.01043. BELYEY, V. S., GALUSHKO, V. G., PAZNUKHOV, D., REINISCH, B. W. and YAMPOLSKY, Y. M., 2000. HF Radar Sounding of TIDs with the Use of the DPS System and Signals from Broadcasting Stations. In: Progress in Electromagnetics Research Symposium PIERS-2000 Proceedings. Cambridge, MA, USA, July 5-14, 2000. p. 602.44. GALUSHKO, V. G., BELEY, V. S., KOLOSKOV, A. V., YAMPOLSKI, Y. M., PAZNUKHOV, V. V., REINISCH, B. W., FOSTER, J. C. and ERICKSON, P., 2003. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci. vol. 38, is. 6, id. 1102. DOI: https://doi.org/10.1029/2002RS00286145. REINISCH, B., GALKIN, I., BELEHAKI, A., PAZNUKHOV, V., HUANG, X., ALTADILL, D., BURESOVA, D., MIELICH, J., VERHULST, T., STANKOV, S., BLANCH, E., KOUBA, D., HAMEL, R., KOZLOV, A., TSAGOURI, I., MOUZAKIS, A., MESSEROTTI, M., PARKINSON, M. and ISHII, M., 2018. Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances. Radio Sci. vol. 53, is. 3, pp. 365–378. DOI: https://doi.org/10.1002/2017RS00626346. KOLOSKOV, A. V., YAMPOLSKI, Y. M., ZALIZOVSKI, A. V., GALUSHKO, V. G., KASCHEEV, A. S., LA HOZ, C., BREKKE, A., BELEY, V. S. and RIETVELD, M. T., 2014. Network of internet-controlled HF receivers for ionospheric researches. Radio Pphys. Radio Astron. vol. 19, no. 4, pp. 324–335. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.32447. CHERENKOV, G. T., ed. 1979. Standard frequency and time signals. Characteristics and schedule of transmittings through radio stations, television and sound broadcast network. The Bulletin. Moscow, USSR: Standards Publishing House. (in Russian).48. PUSHKOV INSTITUTE OF TERRESTRIAL MAGNETISM, IONOSPHERE AND RADIO WAVE PROPAGATION RUSSIAN ACADEMY OF SCIENCES, 2020. PARUS-A Archive [online]. [viewed 27 March 2020]. Available from: https://www.izmiran.ru/ionosphere/moscow/text/49. SOMSIKOV, V. M., 1983. Solar terminator and dynamic of the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian).50. FRIEDMAN, V., 1994. A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise. IEEE Trans. Signal Process. vol. 42, is. 6, pp. 1565–1569. DOI: https://doi.org/10.1109/78.28697851. REZNYCHENKO, A. I., KOLOSKOV, A. V. and YAMPOLSKI, Y. M., 2018. Monitoring of regular and sporadic ionospheric variations on the single-hop HF radio paths. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 266–279. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.26652. MEDVEDEV, A. V., RATOVSKY, K. G., TOLSTIKOV, M. V., OINATS, A. V., ALSATKIN, S. S. and ZHEREBTSOV, G. A., 2017. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. Space Phys. vol. 122, is. 7, pp. 7567–7580. DOI: https://doi.org/10.1002/2017JA02410353. OLIVER, W. L., OTSUKA, Y., SATO M., TAKAMI, T. and FUKAO, S., 1997. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. Space Phys. vol. 102, is. A7, pp. 14499–14512. DOI: https://doi.org/10.1029/97JA0049154. LIZUNOV, G. V. and LEONTIEV, A. YU., 2014. Height of the penetration into the ionosphere for internal atmosphere gravity waves. Space Sci. Technol. vol. 20, no. 4, pp. 31–41. (in Russian). DOI: https://doi.org/10.15407/knit2014.04.03155. BOŠKA, J., ŠAULI, P., ALTADILL, D., SOLÉ, J. G. and ALBERCA, L. F., 2003. Diurnal Variation of Gravity Wave Activity at Midlatitudes in the Ionospheric F region. Stud. Geophys. Geod. vol. 47, is. 3, pp. 579–586. DOI: https://doi.org/10.1023/A:102476361850556. KOTAKE, N., OTSUKA, Y., OGAWA, T., TSUGAWA, T. and SAITO, A., 2007. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space. vol. 59, is. 2, pp. 95–102. DOI: https://doi.org/10.1186/BF0335268157. DEPARTMENT OF RADIOPHYSICS OF GEOSPACE, INSTITUTE OF RADIO ASTRONOMY OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 2018. K-Indexes of geomagnetic activity [online]. [viewed 27 March 2020]. Available from: http://geospace.com.ua/data/metmag_ki.php
publisher Видавничий дім «Академперіодика»
publishDate 2020
url http://rpra-journal.org.ua/index.php/ra/article/view/1332
work_keys_str_mv AT reznychenkoai statisticofseasonalanddiurnalvariationsofdopplerfrequencyshiftofhfsignalsatmidlatituderadiopath
AT koloskovav statisticofseasonalanddiurnalvariationsofdopplerfrequencyshiftofhfsignalsatmidlatituderadiopath
AT sopinao statisticofseasonalanddiurnalvariationsofdopplerfrequencyshiftofhfsignalsatmidlatituderadiopath
AT yampolskiym statisticofseasonalanddiurnalvariationsofdopplerfrequencyshiftofhfsignalsatmidlatituderadiopath
AT reznychenkoai statistikasezonnyhisutočnyhvariacijdoplerovskogosmeŝeniâčastotyvčsignalovnasredneširotnojradiotrasse
AT koloskovav statistikasezonnyhisutočnyhvariacijdoplerovskogosmeŝeniâčastotyvčsignalovnasredneširotnojradiotrasse
AT sopinao statistikasezonnyhisutočnyhvariacijdoplerovskogosmeŝeniâčastotyvčsignalovnasredneširotnojradiotrasse
AT yampolskiym statistikasezonnyhisutočnyhvariacijdoplerovskogosmeŝeniâčastotyvčsignalovnasredneširotnojradiotrasse
AT reznychenkoai statistikasezonnihídobovihvaríacíjdoplerívsʹkogozmíŝennâčastotivčsignalívnaserednʹoširotníjradíolíníí
AT koloskovav statistikasezonnihídobovihvaríacíjdoplerívsʹkogozmíŝennâčastotivčsignalívnaserednʹoširotníjradíolíníí
AT sopinao statistikasezonnihídobovihvaríacíjdoplerívsʹkogozmíŝennâčastotivčsignalívnaserednʹoširotníjradíolíníí
AT yampolskiym statistikasezonnihídobovihvaríacíjdoplerívsʹkogozmíŝennâčastotivčsignalívnaserednʹoširotníjradíolíníí
first_indexed 2025-12-02T15:31:58Z
last_indexed 2025-12-02T15:31:58Z
_version_ 1850763780695261184
spelling rpra-journalorgua-article-13322020-06-09T10:20:32Z STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH СТАТИСТИКА СЕЗОННЫХ И СУТОЧНЫХ ВАРИАЦИЙ ДОПЛЕРОВСКОГО СМЕЩЕНИЯ ЧАСТОТЫ ВЧ СИГНАЛОВ НА СРЕДНЕШИРОТНОЙ РАДИОТРАССЕ СТАТИСТИКА СЕЗОННИХ І ДОБОВИХ ВАРІАЦІЙ ДОПЛЕРІВСЬКОГО ЗМІЩЕННЯ ЧАСТОТИ ВЧ СИГНАЛІВ НА СЕРЕДНЬОШИРОТНІЙ РАДІОЛІНІЇ Reznychenko, A. I. Koloskov, A. V. Sopin, A. O. Yampolski, Y. M. traveling ionospheric disturbances; quasiperiodic variations; Doppler frequency shift; radio path; period; amplitude; probability of detection перемещающиеся ионосферные возмущения; квазипериодические вариации; доплеровское смещение частоты; радиолиния; период; амплитуда; вероятность наблюдения рухомі іоносферні збурення; квазіперіодичні варіації; доплерівське зміщення частоти; радіолінія; період; амплітуда; імовірність спостереження PACS number: 94.20.VvPurpose: An experimental study of signatures of traveling ionospheric disturbances (TID) observed in diurnal-seasonal variations of the parameters of probe HF signals propagating on theoblique single-hop RWM–LFO radio path, derived from the yearlong monitoring data.Design/methodology/approach: A long term digital recording of the HF radio signals’ waveforms of the Exact time and frequency service station (RWM, Moscow, Russia) was made at the Low Frequency Observatory of the IRA NAS–Ukraine (LFO, Martove, Kharkіv reg., Ukraine). The Doppler frequency shift (DFS) was derived from the power spectra of the recorded signals. The DFS quasiperiodic variations were interpreted as the result of passage of traveling ionospheric disturbances associated with the acoustic-gravity waves (AGW) at the height of the F-layer of ionosphere. The value of the DFS variation period was determined as the sum of the time intervals between neighboring zero crossing of two consecutive half-periods, and the amplitude was determined as the range of variations. The cases of F region shielding by the underlying ionospheric layers Es and E were taken into account as well.Findings: The data on the periods and amplitudes of the DFS variations were used for statistical analysis. The probability of DFS variations’ observation was determined for each month. This value lies within 81 to 91 % in winter and spring and decreases to within 52 to 80 % in summer and autumn seasons. It is shown that the rise of electron density in the lower layers of the ionosphere Es and E makes it difficult to detect TIDs in the F region. This results in a significant underestimation of the probability of observation in the summer and partially in the spring-autumn seasons. The diurnal-seasonal dependences of the probability of DFS observation, as well as their periods and amplitudes were determined. The forms of daily distributions of both amplitude and period are generally similar for all the seasons. They show two peaks, one in the morning and the second one in the evening, and the minimum in the afternoon. As respects the seasonal distributions of periods and amplitudes, in summer, a higher median value of period and more even distribution of amplitude are observed. In addition, we evaluated the influence of the level of geomagnetic storminess on the characteristics of DFS variations. It was determined that a rise of geomagnetic activity (K-index ≥2) is accompanied by decreasing of the observation probability and increasing of the amplitudes and periods of DFS variations.Conclusions: The techniques developed for the analysis of the data of Doppler ionospheric sounding by non-special type HF signals can be used for diagnostics and analysis of the ionospheric disturbances.Key words: traveling ionospheric disturbances, quasiperiodic variations, Doppler frequency shift, radio path, period, amplitude, probability of detectionManuscript submitted  11.12.2019Radio phys. radio astron. 2020, 25(2): 118-135REFERENCES1. GOSSARD, E. and HOOKE, W., 1978. Waves in the atmosphere. Moscow, Russia: Mir Publ. (in Russian).2. HOOKE, W. H., 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys. vol. 30, is. 5, pp. 795–823. DOI: https://doi.org/10.1016/S0021-9169(68)80033-93. NARAYANAN, V. L., SHIOKAWA, K., OTSUKA, Y. and NEUDEGG, D., 2018 On the Role of Thermospheric Winds and Sporadic E Layers in the Formation and Evolution of Electrified MSTIDs in Geomagnetic Conjugate Regions. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 6957–6980. DOI: https://doi.org/10.1029/2018JA0252614. MAKELA, J. J. and OTSUKA, Y., 2012. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci. Rev. vol. 168, is. 1-4, pp. 419–440. DOI: https://doi.org/10.1007/s11214-011-9816-65. DULY, T. M., HUBA J. D. and MAKELA, J. J., 2014. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. vol. 119, no. 8, pp. 6745–6757. DOI: https://doi.org/10.1002/2014JA0201466. AFRAIMOVICH, E. L., EDEMSKIY, I. K., LEONOVICH, A. S., LEONOVICH, L. A., VOEYKOV, S. V. and YASYUKEVICH, Y. V., 2009. MHD nature of night-time MSTIDs excited by solar terminator. Geophys. Res. Lett. vol. 36, is. 15, id. L15106. DOI: https://doi.org/10.1029/2009GL0398037. MACDOUGALL, J. W. and JAYACHANDRAN, P. T., 2011. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J. Atmos. Sol. Terr. Phys. vol. 73, is. 17-18, pp. 2437–2443. DOI: https://doi.org/10.1016/j.jastp.2011.10.0098. MATSUMURA, M., SAITO, A., IYEMORI, T., SHINAGAWA, H., TSUGAWA, T., OTSUKA, Y., NISHIOKA, M. and CHEN, C. H., 2011. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space. vol. 63, is. 7, pp. 885–889. DOI: https://doi.org/10.5047/eps.2011.07.0159. HAO, Y.-Q., XIAO, Z. and ZHANG, D.-H., 2006. Responses of the ionosphere to the great Sumatra earthquake and volcanic eruption of Pinatubo. Chin. Phys. Lett. vol. 23, is. 7, pp. 1955–1957. DOI: https://doi.org/10.1088/0256-307X/23/7/08210. HINES, C. O., 1967. On the nature of travelling ionospheric disturbances launched by low‐altitude nuclear explosions. J. Geophys. Res. vol. 72, is. 7, pp. 1877–1882. DOI: https://doi.org/10.1029/JZ072i007p0187711. LIN, C. C. H., SHEN, M.‐H., CHOU, M.‐Y., CHEN, C.‐H., YUE, J., CHEN, P.‐C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL07419212. LIU, H., DING, F., YUE, X., ZHAO, B., SONG, Q., WAN, W., NING, B. and ZHANG, K., 2018. Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China's Long March 4B Rocket. J. Geophys. Res. Space Phys. vol. 123, is. 12, pp. 10319–10330. DOI: https://doi.org/10.1029/2018JA02609613. HUANG, Y.-N, CHENG, K. and CHEN, S.-W., 1985. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. vol. 20, is. 4, pp. 897–906. DOI: https://doi.org/10.1029/RS020i004p0089714. GARCIA, R. F., DOORNBOS, E., BRUINSMA, S. and HEBERT, H., 2014. Atmospheric gravity waves due to the Tohoku‐Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. vol. 119, is. 8, pp. 4498–4506. DOI: https://doi.org/10.1002/2013JD02112015. FRITTS, D. C. and ALEXANDER, M. J., 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. vol. 41, is. 1, id. 1003. DOI: https://doi.org/10.1029/2001RG00010616. LAŠTOVIČKA, J., 2006. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. vol. 68, is. 3-5, pp. 479–497. DOI: https://doi.org/10.1016/j.jastp.2005.01.01817. HOCKE, K. and SCHLEGEL, K., 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. vol. 14, 1s. 9, pp. 917–940. DOI: https://doi.org/10.1007/s00585-996-0917-618. HARGREAVES, J. K., 1979. The Upper Atmosphere and Solar-terrestrial Relations: An Introduction to the Aerospace Environment. New York: Van Nostrand Reinhold.19. WALDOCK, J. A. and JONES, T. B., 1986. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. vol. 48, is. 3, pp. 245–260. DOI: https://doi.org/10.1016/0021-9169(86)90099-120. OINATS, A.V., NISHITANI, N., PONOMARENKO, P., BERNGARDT, O. I. and RATOVSKY, K. G., 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planet Space. vol. 68, is. 1, id. 8. DOI: https://doi.org/10.1186/s40623-016-0390-821. BOWMAN, G. G., 1990. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelect. vol. 42, is. 2, pp. 109–138. DOI: https://doi.org/10.5636/jgg.42.10922. PAZNUKHOV, V. V., GALUSHKO, V. G. and REINISCH, B. W., 2012. Digisonde observations of TIDs with frequency and angular sounding technique. Adv. Space Res. vol. 49, is. 4, pp. 700–710. DOI: https://doi.org/10.1016/j.asr.2011.11.01223. BARABASH, V. V., PANASENKO, S. V., AKSONOVA, K. D. and LISACHENKO, V. N., 2017. Characteristics of moving ionospheric disturbances over Ukraine and West Antarctica during the strong geospace storm according to data of vertical sounding and incoherent scattering. Ukrainian Antarctic Journal [online]. no. 16, pp. 113–122. (in Ukrainian). DOI: https://doi.org/10.33275/1727-7485.16.2017.69 [viewed 27 March 2020]. Available from: http://uaj.uac.gov.ua/index.php/uaj/article/download/69/33/24. WILLIAMS, P. J. S., 1989. Observations of Atmospheric Gravity Waves with Incoherent Scatter Radar. Adv. Space Res. vol. 9, is. 5, pp. 65–72. DOI: https://doi.org/10.1016/0273-1177(89)90342-625. PANASENKO, S.V., GONCHARENKO, L. P., ERICKSON, P. J., AKSONOVA, K. D. and DOMNIN, I. F., 2018. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. vol. 172, pp. 10–23. DOI: https://doi.org/10.1016/j.jastp.2018.03.00126. JONAH, O. F., PANASENKO S. V., AKSONOVA K. D., GONCHARENKO L. P., and COSTER A., 2018 Observations of traveling ionospheric disturbances at midlatitudes during geomagnetic storm of 1–3 September 2016. In: AGU Fall Meeting Abstracts. Washington D.C., USA, December 10-14, 2018. id. SA33C-3491. DOI: 10.13140/RG.2.2.23123.8400327. CHERNOGOR, L. F., PANASENKO. S. V., FROLOV. V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-428. MORTON, F. W. and ESSEX, E. A., 1978. Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique. J. Atmos. Terr. Phys. vol. 40, is. 10-11, pp. 1113–1122. DOI: https://doi.org/10.1016/0021-9169(78)90059-429. AFRAIMOVICH, E. L., KOSOGOROV, E. A., LESYUTA, O. S., USHAKOV, I. I. and YAKOVETS, A. F., 2001. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Ann. Geophys. vol. 19, is. 7, pp. 723–731. DOI: https://doi.org/10.5194/angeo-19-723-200130. CHEN, G., ZHOU, C., LIU, Y., ZHAO, J., TANG, Q., WANG, X. and, ZHAO, Z., 2019. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planet Space. vol. 71, id. 52. DOI: https://doi.org/10.1186/s40623-019-1031-931. SHIOKAWA, K., IHARA, C., OTSUKA, Y. and OGAWA, T., 2003. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. vol. 108, is. A1, id. 1052. DOI: https://doi.org/10.1029/2002JA00949132. HUANG, F., DOU, X., LEI, J., LIN, J., DING, F. and ZHONG, J., 2016. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res. Space. Phys. vol. 121, is. 9, pp. 8887–8899. DOI: https://doi.org/10.1002/2016JA02276033. DOMNIN, I. F., CHEPURNYY, Y. M., EMELYANOV, L. Y., CHERNYAEV, S. V., KONONENKO, A. F., KOTOV, D. V., BOGOMAZ O. V. and ISKRA, D. A., 2014. Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Radiophysics and Ionosphere [online]. no. 47(1089), pp 28–42. [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/299535724_Kharkiv_incoherent_scatter_facility34. ZALIZOVSKI, A. V., KASHCHEIEV, A. S., KASHCHEIEV, S. B., KOLOSKOV, A. V., LISACHENKO, V. N., PAZNUKHOV, V. V., PIKULIK, I., SOPIN, A. A. and YAMPOLSKI, Y. M., 2018. A prototype of a portable coherent ionosonde. Space Sci. Technol. vol. 24, no. 3, pp. 10–22. (in Russian). DOI: https://doi.org/10.15407/knit2018.03.01035. ZALIZOVSKI, A., YAMPOLSKI, Y., MISHIN, E., KOLOSKOV, A., PAZNUKHOV, V., KASHCHEYEV, S., SOPIN, A., AKSONOVA K. and ZANIMONSKY, E., 2019. AGW/TID over the Antarctic Peninsula and Eastern Europe as observerd by multiposition HF doppler and GNSS-TEC techniques. In: CEDAR-2019 Workshop. [online]. Santa Fe, NM, USA, 16-21 June 2019 [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/33423094036. GALUSHKO, V. G., PAZNUKHOV, V. V., SOPIN, A. A. and YAMPOLSKI, Y. M., 2016. Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. J. Geophys. Res. Space Phys. vol. 121, is. 4, pp. 3395–3409. DOI: https://doi.org/10.1002/2015JA02230237. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s1710229838. GALUSHKO, V. G., 1997. Frequency-and-Angular Sounding of the Iionosphere. Telecomm. Radio Eng. vol. 51, is. 6-7, pp. 1–6. DOI: https://doi.org/10.1615/TelecomRadEng.v51.i6-7.1039. GALUSHKO, V. G., KASCHEEV, A. S., PAZNUKHOV, V. V., YAMPOLSKI, Y. M. and REINISCH, B. W., 2008. Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves. Radio Sci. vol. 43, is. 4, id. RS4013. DOI: https://doi.org/10.1029/2007RS00373540. BELEY, V. S., GALUSHKO, V. G. and YAMPOLSKI, Y. M., 1995. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci.vol. 30, is. 6, pp. 1739–1752. DOI: https://doi.org/10.1029/95RS0199241. PIKULIK, I. I, KASHCHEYEV, S. B., GALUSHKO, V. G. and YAMPOLSKY, YU. M., 2003. HF-receiver Equipment for Frequency-and-Angular Sounding of the Ionosphere in Antarctica. Ukrainian Antarctic journal [online]. no. 1, pp. 61–69. (in Russian). [viewed 27 March 2020]. Available from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128125/08-Pikulin.pdf42. GALUSHKO, V. G., KASHCHEYEV, A. S., KASHCHEYEV, S. B., KOLOSKOV, A. V., PIKULIK, I. I., YAMPOLSKI, Y. M., LITVINOV, V. A., MILINEVSKY, G. P. and RAKUSA-SUSZCZEWSKI, S., 2007. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys. vol. 69, is. 4-5, pp. 403–410. DOI: https://doi.org/10.1016/j.jastp.2006.05.01043. BELYEY, V. S., GALUSHKO, V. G., PAZNUKHOV, D., REINISCH, B. W. and YAMPOLSKY, Y. M., 2000. HF Radar Sounding of TIDs with the Use of the DPS System and Signals from Broadcasting Stations. In: Progress in Electromagnetics Research Symposium PIERS-2000 Proceedings. Cambridge, MA, USA, July 5-14, 2000. p. 602.44. GALUSHKO, V. G., BELEY, V. S., KOLOSKOV, A. V., YAMPOLSKI, Y. M., PAZNUKHOV, V. V., REINISCH, B. W., FOSTER, J. C. and ERICKSON, P., 2003. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci. vol. 38, is. 6, id. 1102. DOI: https://doi.org/10.1029/2002RS00286145. REINISCH, B., GALKIN, I., BELEHAKI, A., PAZNUKHOV, V., HUANG, X., ALTADILL, D., BURESOVA, D., MIELICH, J., VERHULST, T., STANKOV, S., BLANCH, E., KOUBA, D., HAMEL, R., KOZLOV, A., TSAGOURI, I., MOUZAKIS, A., MESSEROTTI, M., PARKINSON, M. and ISHII, M., 2018. Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances. Radio Sci. vol. 53, is. 3, pp. 365–378. DOI: https://doi.org/10.1002/2017RS00626346. KOLOSKOV, A. V., YAMPOLSKI, Y. M., ZALIZOVSKI, A. V., GALUSHKO, V. G., KASCHEEV, A. S., LA HOZ, C., BREKKE, A., BELEY, V. S. and RIETVELD, M. T., 2014. Network of internet-controlled HF receivers for ionospheric researches. Radio Pphys. Radio Astron. vol. 19, no. 4, pp. 324–335. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.32447. CHERENKOV, G. T., ed. 1979. Standard frequency and time signals. Characteristics and schedule of transmittings through radio stations, television and sound broadcast network. The Bulletin. Moscow, USSR: Standards Publishing House. (in Russian).48. PUSHKOV INSTITUTE OF TERRESTRIAL MAGNETISM, IONOSPHERE AND RADIO WAVE PROPAGATION RUSSIAN ACADEMY OF SCIENCES, 2020. PARUS-A Archive [online]. [viewed 27 March 2020]. Available from: https://www.izmiran.ru/ionosphere/moscow/text/49. SOMSIKOV, V. M., 1983. Solar terminator and dynamic of the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian).50. FRIEDMAN, V., 1994. A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise. IEEE Trans. Signal Process. vol. 42, is. 6, pp. 1565–1569. DOI: https://doi.org/10.1109/78.28697851. REZNYCHENKO, A. I., KOLOSKOV, A. V. and YAMPOLSKI, Y. M., 2018. Monitoring of regular and sporadic ionospheric variations on the single-hop HF radio paths. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 266–279. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.26652. MEDVEDEV, A. V., RATOVSKY, K. G., TOLSTIKOV, M. V., OINATS, A. V., ALSATKIN, S. S. and ZHEREBTSOV, G. A., 2017. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. Space Phys. vol. 122, is. 7, pp. 7567–7580. DOI: https://doi.org/10.1002/2017JA02410353. OLIVER, W. L., OTSUKA, Y., SATO M., TAKAMI, T. and FUKAO, S., 1997. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. Space Phys. vol. 102, is. A7, pp. 14499–14512. DOI: https://doi.org/10.1029/97JA0049154. LIZUNOV, G. V. and LEONTIEV, A. YU., 2014. Height of the penetration into the ionosphere for internal atmosphere gravity waves. Space Sci. Technol. vol. 20, no. 4, pp. 31–41. (in Russian). DOI: https://doi.org/10.15407/knit2014.04.03155. BOŠKA, J., ŠAULI, P., ALTADILL, D., SOLÉ, J. G. and ALBERCA, L. F., 2003. Diurnal Variation of Gravity Wave Activity at Midlatitudes in the Ionospheric F region. Stud. Geophys. Geod. vol. 47, is. 3, pp. 579–586. DOI: https://doi.org/10.1023/A:102476361850556. KOTAKE, N., OTSUKA, Y., OGAWA, T., TSUGAWA, T. and SAITO, A., 2007. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space. vol. 59, is. 2, pp. 95–102. DOI: https://doi.org/10.1186/BF0335268157. DEPARTMENT OF RADIOPHYSICS OF GEOSPACE, INSTITUTE OF RADIO ASTRONOMY OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 2018. K-Indexes of geomagnetic activity [online]. [viewed 27 March 2020]. Available from: http://geospace.com.ua/data/metmag_ki.php УДК 537.876.23, 550.388.2Предмет и цель работы: Экспериментальное исследование проявлений перемещающихся ионосферных возмущений (ПИВ) в суточно-сезонных вариациях параметров пробных ВЧ сигналов на наклонной односкачковой радиотрассе РВМ–НЧО, восстановленных по данным полного года мониторинговых наблюдений.Методы и методология: Длительная цифровая регистрация волновых форм ВЧ радиосигналов станции Службы точного времени и частоты (РВМ, Москва, Россия) осуществлялась в Низкочастотной обсерватории Радиоастрономического института НАН Украины (НЧО, с. Мартовое, Харьковская обл.). По энергетическим спектрам принятых сигналов оценивалось доплеровское смещение частоты (ДСЧ). Квазипериодические вариации ДСЧ интерпретировались как результат прохождения ПИВ, ассоциируемых с акустико-гравитационными волнами (АГВ), на высотах F-слоя ионосферы. Значение периода вариаций ДСЧ определялось как сумма интервалов времени между соседними нулями двух следующих друг за другом полупериодов, а под амплитудой понимался размах вариаций. Дополнительно учитывались случаи экранирования области F нижележащими ионосферными слоями Es и E.Результаты: Для статистического анализа использовались данные о периодах и амплитудах вариаций ДСЧ. Определена вероятность наблюдения вариаций ДСЧ для каждого месяца, которая лежит в диапазоне 81÷91% зимой и весной с уменьшением летом и осенью до 52÷80 %. Показано, что рост концентрации электронов в нижних слоях ионосферы Es  и E затрудняет обнаружение ПИВ в F-области. Это приводит к существенному занижению вероятности наблюдения в летний и частично в весенне-осенний сезоны. Определены сезонно-суточные зависимости вероятности наблюдения, периодов и амплитуд вариаций ДСЧ. Формы суточных распределений как амплитуд, так и периодов для всех сезонов в целом сходны. Имеют место максимумы утром и вечером и минимум в послеполуденное время. Что касается сезонных распределений периодов и амплитуд, летом наблюдается более высокое медианное значение периода и более равномерное распределение амплитуды. Дополнительно проведена оценка влияния уровня геомагнитной возмущенности на характеристики вариаций ДСЧ. Выявлено, что с увеличением геомагнитной активности (K-индекс ≥2) происходит уменьшение вероятности наблюдения и рост амплитуд и периодов вариаций ДСЧ.Заключение: Разработанные методики анализа данных доплеровского зондирования ионосферы ВЧ сигналами неспециального типа могут использоваться для диагностики и анализа ионосферных возмущений.Ключевые слова: перемещающиеся ионосферные возмущения, квазипериодические вариации, доплеровское смещение частоты, радиолиния, период, амплитуда, вероятность наблюденияСтатья поступила в редакцию 11.12.2019Radio phys. radio astron. 2020, 25(2): 118-135СПИСОК ЛИТЕРАТУРЫ1. Госсард Э., Хук У. Волны в атмосфере. Москва: Мир, 1978. 532 с.2. Hooke W. H. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys. 1968. Vol. 30, Is. 5. P. 795–823. DOI: 10.1016/S0021-9169(68)80033-93. Narayanan V. L., Shiokawa K., Otsuka Y., and Neudegg D. On the Role of Thermospheric Winds and Sporadic E Layers in the Formation and Evolution of Electrified MSTIDs in Geomagnetic Conjugate Regions. J. Geophys. Res. Space Phys. 2018. Vol. 123, Is. 8. P. 6957–6980. DOI: 10.1029/2018JA0252614. Makela J. J. and Otsuka Y. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci. Rev. 2012. Vol. 168, Is. 1-4. P. 419–440. DOI: 10.1007/s11214-011-9816-65. Duly T. M., Huba J. D., and Makela J. J. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. 2014. Vol. 119, Is. 8. P.  6745–6757. DOI: 10.1002/2014JA0201466. Afraimovich E. L., Edemskiy I. K., Leonovich A. S., Leonovich L. A., Voeykov S. V., and Yasyukevich Y. V. MHD nature of night-time MSTIDs excited by solar terminator. Geophys. Res. Lett. 2009. Vol. 36, Is. 15. id. L15106. DOI: 10.1029/2009GL0398037. MacDougall J. W. and Jayachandran P. T. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J. Atmos. Sol. Terr. Phys. 2011. Vol. 73, Is. 17-18. P. 2437–2443. DOI: 10.1016/j.jastp.2011.10.0098. Matsumura M., Saito A., Iyemori T., Shinagawa H., Tsugawa T., Otsuka Y., Nishioka M., and Chen C. H. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space. 2011. Vol. 63, Is. 7. P. 885–889. DOI: 10.5047/eps.2011.07.0159. Hao Y.-Q., Xiao Z., and Zhang D.-H. Responses of the Ionosphere to the Great Sumatra Earthquake and Volcanic Eruption of Pinatubo. Chin. Phys. Lett. 2006. Vol. 23, Is. 7. P. 1955–1957. DOI: 10.1088/0256-307X/23/7/08210. Hines C. O. On the nature of travelling ionospheric disturbances launched by low‐altitude nuclear explosions. J. Geophys. Res. 1967. Vol. 72, Is. 7. P. 1877–1882. DOI: 10.1029/JZ072i007p0187711. Lin C. C. H., Shen M.‐H., Chou M.‐Y., Chen C.‐H., Yue J., Chen P.‐C., and Matsumura M. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017. Vol. 44, Is. 15. P. 7578–7586. DOI: 10.1002/2017GL07419212. Liu H., Ding F., Yue X., Zhao B., Song Q., Wan W., Ning B., and Zhang K. Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China’s Long March 4B Rocket. J. Geophys. Res. Space Phys. 2018. Vol. 123, Is. 12. P. 10319–10330. DOI: 10.1029/2018JA02609613. Huang Y.-N, Cheng K., and Chen S.-W. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. 1985. Vol. 20, Is. 4. P. 897–906. DOI: 10.1029/RS020i004p0089714. Garcia R. F., Doornbos E., Bruinsma S., and Hebert H. Atmospheric gravity waves due to the Tohoku‐Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. 2014. Vol. 119, Is. 8. P. 4498–4506. DOI: 10.1002/2013JD02112015. Fritts D. C. and Alexander M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003. Vol. 41, Is. 1. id. 1003. DOI: 10.1029/2001RG00010616. Laštovička J. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 2006. Vol. 68, Is. 3-5. P. 479–497. DOI: 10.1016/j.jastp.2005.01.01817. Hocke K. and Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996. Vol. 14, Is. 9. P. 917–940. DOI: 10.1007/s00585-996-0917-618. Харгривс Дж. К. Верхняя атмосфера и солнечно-земные связи (Введение в физику околоземной космической среды). Ленинград: Гидрометеоиздат, 1982. 290 с.19. Waldock J. A. and Jones T. B. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. 1986. Vol. 48, Is. 3. P. 245–260. DOI: 10.1016/0021-9169(86)90099-120. Oinats A. V., Nishitani N., Ponomarenko P., Berngardt O. I., and Ratovsky K. G. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planet Space. 2016. Vol. 68, Is. 1. id. 8. DOI: 10.1186/s40623-016-0390-821. Bowman G. G. A Review of Some Recent Work on Mid-Latitude Spread-F Occurrence as Detected by Ionosondes. J. Geomagn. Geoelect. 1990. Vol. 42, Is. 2. P. 109–138. DOI: 10.5636/jgg.42.10922. Paznukhov V. V., Galushko V. G., and Reinisch B. W. Digisonde observations of TIDs with frequency and angular sounding technique. Adv. Space Res. 2012. Vol. 49, Is. 4. P. 700–710. DOI: 10.1016/j.asr.2011.11.01223. Барабаш В. В., Панасенко С. В., Аксьонова К. Д., Лисаченко В. М. Характеристики рухомих іоносферних збурень над Україною та західною Антарктикою під час сильної геокосмічної бурі за даними вертикального зондування та некогерентного розсіяння. Український антарктичний журнал. 2017. № 16. С. 113–122. URL: http://uaj.uac.gov.ua/index.php/uaj/article/view/69/33 (дата обращения: 27.03.2020). DOI: 10.33275/1727-7485.16.2017.6924. Williams P. J. S. Observations of atmospheric gravity waves with incoherent scatter radar. Adv. Space Res. 1989. Vol. 9, Is. 5. P. 65–72. DOI: 10.1016/0273-1177(89)90342-625. Panasenko S.V., Goncharenko L. P., Erickson P. J., Aksonova K. D., and Domnin I. F. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. 2018. Vol. 172. P. 10–23. DOI: 10.1016/j.jastp.2018.03.00126. Jonah O. F., Panasenko S. V., Aksonova K. D., Goncharenko L. P., and Coster A. Observations of traveling ionospheric disturbances at midlatitudes during geomagnetic storm of 1–3 September 2016. 2018 AGU Fall Meeting Abstracts. (December 10-14, 2018. Washington) Washington D.C., USA, 2018. id. SA33C-3491. DOI: 10.13140/RG.2.2.23123.8400327. Черногор Л. Ф., Панасенко С. В., Фролов В. Л., Домнин И. Ф. Наблюдения волновых возмущений в ионосфере на харьковском радаре некогерентного рассеяния при воздействии на околоземную плазму мощным радиоизлучением. Изв. вузов. Радиофизика. 2015. Т. 58, № 2. С. 85–99. URL: https://radiophysics.unn.ru/sites/default/files/papers/2015_2_85.pdf (дата обращения: 27.03.2020).28. Morton F. W. and Essex E. A. Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique. J. Atmos. Terr. Phys. 1978. Vol. 40, Is. 10-11. P. 1113–1122. DOI: 10.1016/0021-9169(78)90059-429. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S., Ushakov I. I., and Yakovets A. F. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Ann. Geophys. 2001. Vol. 19, Is. 7. P. 723–731. DOI: 10.5194/angeo-19-723-200130. Chen G., Zhou C., Liu Y., Zhao J., Tang Q., Wang X., and Zhao Z. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planet Space. 2019. Vol. 71, Is. 1. id. 52. DOI: 10.1186/s40623-019-1031-931. Shiokawa K., Ihara C., Otsuka Y., and Ogawa T. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. 2003. Vol. 108, Is. A1. id. 1052. DOI: 10.1029/2002JA00949132. Huang F., Dou X., Lei J., Lin J., Ding F., and Zhong J. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res. Space. Phys. 2016. Vol. 121, Is. 9. P. 8887–8899. DOI: 10.1002/2016JA02276033. Domnin I. F., Chepurnyy Y. M., Emelyanov L. Y., Chernyaev S. V., Kononenko A. F., Kotov D. V., Bogomaz O. V., and Iskra D. A. Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Radiophysics and Ionosphere. 2014. No. 47(1089). P 28–42. URL: https://www.researchgate.net/publication/299535724_Kharkiv_incoherent_scatter_facility (дата обращения: 19.03.2020).34. Зализовский А. В., Кащеев А. C., Кащеев С. Б., Колосков А. В., Лисаченко В. Н., Пазнухов В. В., Пикулик И. И., Сопин А. А., Ямпольский Ю. М. Макет портативного когерентного ионозонда. Космічна наука і технологія. 2018. Т. 24, № 3. С. 10–22. DOI: 10.15407/knit2018.03.01035. Zalizovski A., Yampolski Y., Mishin E., Koloskov A., Paznukhov V., Kashcheyev S., Sopin A., Aksonova K., and Zanimonsky E. AGW/TID over the Antarctic Peninsula and Eastern Europe as observerd by multiposition HF doppler and GNSS-TEC techniques. CEDAR-2019 Workshop. (16-21 June, 2019. Santa Fe). Santa Fe, NM, USA, 2019. URL: https://www.researchgate.net/publication/334230940 (дата обращения: 19.03.2020).36. Galushko V. G., Paznukhov V. V., Sopin A. A., and Yampolski Y. M. Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. J. Geophys. Res. Space Phys. 2016. Vol. 121, Is. 4. P. 3395–3409. DOI: 10.1002/2015JA02230237. Nykiel G., Zanimonskiy Y. M., Yampolski Y. M., and Figurski M. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. 2017. Vol. 17, Is. 10. id. 2298. DOI: 10.3390/s1710229838. Galushko V. G. Frequency-and-Angular Sounding of the Iionosphere. Telecomm. Radio Eng. 1997. Vol. 51, Is. 6-7. P 1–6. DOI: 10.1615/TelecomRadEng.v51.i6-7.1039. Galushko V. G., Kascheev A. S., Paznukhov V. V., Yampolski Y. M., and Reinisch B. W. Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves. Radio Sci. 2008. Vol. 43, Is. 4. id. RS4013. DOI: 10.1029/2007RS00373540. Beley V. S., Galushko V. G., and Yampolski Y. M. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci. 1995. Vol. 30, Is. 6. P. 1739–1752. DOI: 10.1029/95RS0199241. Пикулик И. И., Кащеев С. Б., Галушко В. Г., Ямпольский Ю.М. Приемный КВ комплекс для частотно-углового зондирования ионосферных возмущений в Антарктике. Украиїнський антарктичний журнал. 2003. №1. C. 61–69. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128125/08-Pikulin.pdf (дата обращения: 27.03.2020).42. Galushko V. G., Kashcheyev A. S., Kashcheyev S. B., Koloskov A. V., Pikulik I. I., Yampolski Y. M., Litvinov V. A., Milinevsky G. P., and Rakusa-Suszczewski S. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys. 2007. Vol. 69, Is. 4-5. P. 403–410. DOI: 10.1016/j.jastp.2006.05.01043. Belyey V. S., Galushko V. G., Paznukhov D., Reinisch B. W., and Yampolsky Y. M. HF Radar Sounding of TIDs with the Use of the DPS System and Signals from Broadcasting Stations. Proceedings of the Progress in Electromagnetics Research Symp. PIERS-2000. (July 5-14, 2000. Cambridge). Cambridge, MA, USA, 2000. P. 602.44. Galushko V. G., Beley V. S., Koloskov A. V., Yampolski Y. M., Paznukhov V. V., Reinisch B. W., Foster J. C., and Erickson P. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci. 2003. Vol. 38, Is. 6. id. 1102. DOI: 10.1029/2002RS00286145. Reinisch B., Galkin I., Belehaki A., Paznukhov V., Huang X., Altadill D., Buresova D., Mielich J., Verhulst T., Stankov S., Blanch E., Kouba D., Hamel R., Kozlov A., Tsagouri I., Mouzakis A., Messerotti M., Parkinson M., and Ishii M. Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances. Radio Sci. 2018. Vol. 53, Is. 3. P. 365–378. DOI: 10.1002/2017RS00626346. Колосков А. В., Ямпольский Ю. М., Зализовский А. В., Галушко В. Г., Кащеев А. С., Ла Хоз С., Брекке А., Белей В. С., Ритвелд М. Т. Сеть Интернет-управляемых ВЧ приемников для ионосферных исследований. Радіофизіка і радіоастрономія. 2014. T. 19, № 4. C. 324–335. DOI: 10.15407/rpra19.04.32447. Эталонные сигналы частоты и времени. Характеристики и программы передач через радиостанции, телевидение и сеть звукового вещания. Бюллетень. Под ред. Г. Т. Черенкова. Москва: Издательство стандартов, 1979. 27 c.48. PARUS-A Archive. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences. Last updated: 2020. URL: https://www.izmiran.ru/ionosphere/moscow/text/ (дата обращения: 27.03.2020).49. Сомсиков В. М. Солнечный терминатор и динамика атмосферы. Алма-Ата: Наука, 1983. 192 с.50. Friedman V. A. A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise. IEEE Trans. Signal Process. 1994. Vol 42, Is. 6. P. 1565–1569. DOI: 10.1109/78.28697851. Резниченко А. И., Колосков А. В., Ямпольский Ю. М. Мониторинг регулярных и спорадических ионосферных вариаций на односкачковых ВЧ радиолиниях. Радіофізика і радіоастрономія. 2018. Т. 23, № 4. С. 266–279. DOI: 10.15407/rpra23.04.26652. Medvedev А. V., Ratovsky K. G., Tolstikov M. V., Oinats A. V., Alsatkin S. S., and Zherebtsov G. A. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. Space Phys. 2017. Vol. 122, Is. 7. P. 7567–7580. DOI: 10.1002/2017JA02410353. Oliver W. L., Otsuka Y., Sato M., Takami T., and Fukao S. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. Space Phys. 1997. Vol. 102, Is. A7. P. 14499–14512. DOI: 10.1029/97JA0049154. Лизунов Г. В, Леонтьев А. Ю. Высота проникновения в ионосферу внутренних атмосферных гравитационных волн. Космічна наука і технологія. 2014. T. 20, № 4. С. 31–41. DOI: 10.15407/knit2014.04.03155. Boška J., Šauli P., Altadill D., Solé J. G., and Alberca L. F. Diurnal Variation of Gravity Wave Activity at Midlatitudes in the Ionospheric F region. Stud. Geophys. Geod. 2003. Vol. 47, Is. 3. P. 579–586. DOI: 10.1023/A:102476361850556. Kotake N., Otsuka Y., Ogawa T., Tsugawa T., and Saito A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space. 2007. Vol. 59, Is. 2. P. 95–102. DOI: 10.1186/BF0335268157. K-Indexes of geomagnetic activity. Department of Radiophysics of Geospace, Institute of Radio Astronomy of the National Academy of Sciences of Ukraine. URL: http://geospace.com.ua/data/metmag_ki.php (дата обращения: 27.03.2020). УДК 537.876.23, 550.388.2Предмет і мета роботи: Експериментальне дослідження проявів рухомих іоносферних збурень (РІЗ) у добово-сезонних варіаціях параметрів пробних ВЧ сигналів на похилій односкачковій радіолінії РВМ–НЧО, відновлених за даними повного року моніторингових спостережень.Методи і методологія: Тривала цифрова реєстрація хви- льових форм ВЧ радіосигналів станції Служби точного часу і частоти (РВМ, Москва, Росія) здійснювалася у Низькочастотній обсерваторії Радіоастрономічного інституту НАН України (НЧО, с. Мартове, Харківська обл.). За енергетичними спектрами прийнятих сигналів оцінювалося доплерівське зміщення частоти (ДЗЧ). Квазіперіодичні варіації ДЗЧ інтерпретувалися як результат проходження РІЗ, асоційованих з акустико-гравітаційними хвилями (АГХ) на висотах F-шару іоносфери. Значення періоду варіацій ДЗЧ визначалося як сума інтервалів часу між сусідніми нулями двох слідуючих один за одним напівперіодів, а під амплітудою розумівся розмах варіацій. Додатково враховувалися випадки екранування області F нижчележачими іоносферними шарами Es і E.Результати: Для статистичного аналізу використовувалися дані про періоди і амплітуди квазіперіодичних варіацій ДЗЧ. Визначено імовірність спостереження варіацій ДЗЧ для кожного місяця, яка лежить в діапазоні 81÷91% взимку та навесні зі зменшенням влітку та восени до 52÷80 %. Показано, що зростання концентрації електронів у нижніх шарах іоносфери Es і E ускладнює виявлення РІЗ в F-області. Це призводить до суттєвого заниження імовірності спостереження у літній і частково у весняно-осінній сезони. Визначено сезонно-добові залежності імовірності спостереження, періодів і амплітуд РІЗ. Форми добових розподілів як амплітуд, так і періодів для всіх сезонів у цілому подібні. Мають місце максимуми вранці і ввечері та мінімум після опівдня. Що стосується сезонних розподілів періодів і амплітуд, влітку спостерігається вище медіанне значення періоду та рівномірніший розподіл амплітуди. Додатково виконано оцінку впли- ву рівня геомагнітної збуреності на характеристики варіацій ДЗЧ. Виявлено, що зі збільшенням геомагнітної активності (K-індекс ≥2) відбувається зменшення імовірності спостереження і зростання амплітуд і періодів варіацій ДЗЧ.Висновок: Розроблені методики аналізу даних доплерівського зондування іоносфери ВЧ сигналами неспеціального типу можуть використовуватися для діагностики та аналізу іоносферних збурень.Ключові слова: рухомі іоносферні збурення, квазіперіодичні варіації, доплерівське зміщення частоти, радіолінія, період, амплітуда, імовірність спостереженняСтаття надійшла до редакції 11.12.2019Radio phys. radio astron. 2020, 25(2): 118-135СПИСОК ЛІТЕРАТУРИ1. Госсард Э., Хук У. Волны в атмосфере. Москва: Мир, 1978. 532 с.2. Hooke W. H. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys. 1968. Vol. 30, Is. 5. P. 795–823. DOI: 10.1016/S0021-9169(68)80033-93. Narayanan V. L., Shiokawa K., Otsuka Y., and Neudegg D. On the Role of Thermospheric Winds and Sporadic E Layers in the Formation and Evolution of Electrified MSTIDs in Geomagnetic Conjugate Regions. J. Geophys. Res. Space Phys. 2018. Vol. 123, Is. 8. P. 6957–6980. DOI: 10.1029/2018JA0252614. Makela J. J. and Otsuka Y. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci. Rev. 2012. Vol. 168, Is. 1-4. P. 419–440. DOI: 10.1007/s11214-011-9816-65. Duly T. M., Huba J. D., and Makela J. J. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. 2014. Vol. 119, Is. 8. P.  6745–6757. DOI: 10.1002/2014JA0201466. Afraimovich E. L., Edemskiy I. K., Leonovich A. S., Leonovich L. A., Voeykov S. V., and Yasyukevich Y. V. MHD nature of night-time MSTIDs excited by solar terminator. Geophys. Res. Lett. 2009. Vol. 36, Is. 15. id. L15106. DOI: 10.1029/2009GL0398037. MacDougall J. W. and Jayachandran P. T. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J. Atmos. Sol. Terr. Phys. 2011. Vol. 73, Is. 17-18. P. 2437–2443. DOI: 10.1016/j.jastp.2011.10.0098. Matsumura M., Saito A., Iyemori T., Shinagawa H., Tsugawa T., Otsuka Y., Nishioka M., and Chen C. H. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space. 2011. Vol. 63, Is. 7. P. 885–889. DOI: 10.5047/eps.2011.07.0159. Hao Y.-Q., Xiao Z., and Zhang D.-H. Responses of the Ionosphere to the Great Sumatra Earthquake and Volcanic Eruption of Pinatubo. Chin. Phys. Lett. 2006. Vol. 23, Is. 7. P. 1955–1957. DOI: 10.1088/0256-307X/23/7/08210. Hines C. O. On the nature of travelling ionospheric disturbances launched by low‐altitude nuclear explosions. J. Geophys. Res. 1967. Vol. 72, Is. 7. P. 1877–1882. DOI: 10.1029/JZ072i007p0187711. Lin C. C. H., Shen M.‐H., Chou M.‐Y., Chen C.‐H., Yue J., Chen P.‐C., and Matsumura M. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017. Vol. 44, Is. 15. P. 7578–7586. DOI: 10.1002/2017GL07419212. Liu H., Ding F., Yue X., Zhao B., Song Q., Wan W., Ning B., and Zhang K. Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China’s Long March 4B Rocket. J. Geophys. Res. Space Phys. 2018. Vol. 123, Is. 12. P. 10319–10330. DOI: 10.1029/2018JA02609613. Huang Y.-N, Cheng K., and Chen S.-W. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. 1985. Vol. 20, Is. 4. P. 897–906. DOI: 10.1029/RS020i004p0089714. Garcia R. F., Doornbos E., Bruinsma S., and Hebert H. Atmospheric gravity waves due to the Tohoku‐Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. 2014. Vol. 119, Is. 8. P. 4498–4506. DOI: 10.1002/2013JD02112015. Fritts D. C. and Alexander M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003. Vol. 41, Is. 1. id. 1003. DOI: 10.1029/2001RG00010616. Laštovička J. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 2006. Vol. 68, Is. 3-5. P. 479–497. DOI: 10.1016/j.jastp.2005.01.01817. Hocke K. and Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996. Vol. 14, Is. 9. P. 917–940. DOI: 10.1007/s00585-996-0917-618. Харгривс Дж. К. Верхняя атмосфера и солнечно-земные связи (Введение в физику околоземной космической среды). Ленинград: Гидрометеоиздат, 1982. 290 с.19. Waldock J. A. and Jones T. B. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. 1986. Vol. 48, Is. 3. P. 245–260. DOI: 10.1016/0021-9169(86)90099-120. Oinats A. V., Nishitani N., Ponomarenko P., Berngardt O. I., and Ratovsky K. G. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planet Space. 2016. Vol. 68, Is. 1. id. 8. DOI: 10.1186/s40623-016-0390-821. Bowman G. G. A Review of Some Recent Work on Mid-Latitude Spread-F Occurrence as Detected by Ionosondes. J. Geomagn. Geoelect. 1990. Vol. 42, Is. 2. P. 109–138. DOI: 10.5636/jgg.42.10922. Paznukhov V. V., Galushko V. G., and Reinisch B. W. Digisonde observations of TIDs with frequency and angular sounding technique. Adv. Space Res. 2012. Vol. 49, Is. 4. P. 700–710. DOI: 10.1016/j.asr.2011.11.01223. Барабаш В. В., Панасенко С. В., Аксьонова К. Д., Лисаченко В. М. Характеристики рухомих іоносферних збурень над Україною та західною Антарктикою під час сильної геокосмічної бурі за даними вертикального зондування та некогерентного розсіяння. Український антарктичний журнал. 2017. № 16. С. 113–122. URL: http://uaj.uac.gov.ua/index.php/uaj/article/view/69/33 (дата обращения: 27.03.2020). DOI: 10.33275/1727-7485.16.2017.6924. Williams P. J. S. Observations of atmospheric gravity waves with incoherent scatter radar. Adv. Space Res. 1989. Vol. 9, Is. 5. P. 65–72. DOI: 10.1016/0273-1177(89)90342-625. Panasenko S.V., Goncharenko L. P., Erickson P. J., Aksonova K. D., and Domnin I. F. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. 2018. Vol. 172. P. 10–23. DOI: 10.1016/j.jastp.2018.03.00126. Jonah O. F., Panasenko S. V., Aksonova K. D., Goncharenko L. P., and Coster A. Observations of traveling ionospheric disturbances at midlatitudes during geomagnetic storm of 1–3 September 2016. 2018 AGU Fall Meeting Abstracts. (December 10-14, 2018. Washington) Washington D.C., USA, 2018. id. SA33C-3491. DOI: 10.13140/RG.2.2.23123.8400327. Черногор Л. Ф., Панасенко С. В., Фролов В. Л., Домнин И. Ф. Наблюдения волновых возмущений в ионосфере на харьковском радаре некогерентного рассеяния при воздействии на околоземную плазму мощным радиоизлучением. Изв. вузов. Радиофизика. 2015. Т. 58, № 2. С. 85–99. URL: https://radiophysics.unn.ru/sites/default/files/papers/2015_2_85.pdf (дата обращения: 27.03.2020).28. Morton F. W. and Essex E. A. Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique. J. Atmos. Terr. Phys. 1978. Vol. 40, Is. 10-11. P. 1113–1122. DOI: 10.1016/0021-9169(78)90059-429. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S., Ushakov I. I., and Yakovets A. F. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Ann. Geophys. 2001. Vol. 19, Is. 7. P. 723–731. DOI: 10.5194/angeo-19-723-200130. Chen G., Zhou C., Liu Y., Zhao J., Tang Q., Wang X., and Zhao Z. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planet Space. 2019. Vol. 71, Is. 1. id. 52. DOI: 10.1186/s40623-019-1031-931. Shiokawa K., Ihara C., Otsuka Y., and Ogawa T. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. 2003. Vol. 108, Is. A1. id. 1052. DOI: 10.1029/2002JA00949132. Huang F., Dou X., Lei J., Lin J., Ding F., and Zhong J. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res. Space. Phys. 2016. Vol. 121, Is. 9. P. 8887–8899. DOI: 10.1002/2016JA02276033. Domnin I. F., Chepurnyy Y. M., Emelyanov L. Y., Chernyaev S. V., Kononenko A. F., Kotov D. V., Bogomaz O. V., and Iskra D. A. Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Radiophysics and Ionosphere. 2014. No. 47(1089). P 28–42. URL: https://www.researchgate.net/publication/299535724_Kharkiv_incoherent_scatter_facility (дата обращения: 19.03.2020).34. Зализовский А. В., Кащеев А. C., Кащеев С. Б., Колосков А. В., Лисаченко В. Н., Пазнухов В. В., Пикулик И. И., Сопин А. А., Ямпольский Ю. М. Макет портативного когерентного ионозонда. Космічна наука і технологія. 2018. Т. 24, № 3. С. 10–22. DOI: 10.15407/knit2018.03.01035. Zalizovski A., Yampolski Y., Mishin E., Koloskov A., Paznukhov V., Kashcheyev S., Sopin A., Aksonova K., and Zanimonsky E. AGW/TID over the Antarctic Peninsula and Eastern Europe as observerd by multiposition HF doppler and GNSS-TEC techniques. CEDAR-2019 Workshop. (16-21 June, 2019. Santa Fe). Santa Fe, NM, USA, 2019. URL: https://www.researchgate.net/publication/334230940 (дата обращения: 19.03.2020).36. Galushko V. G., Paznukhov V. V., Sopin A. A., and Yampolski Y. M. Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. J. Geophys. Res. Space Phys. 2016. Vol. 121, Is. 4. P. 3395–3409. DOI: 10.1002/2015JA02230237. Nykiel G., Zanimonskiy Y. M., Yampolski Y. M., and Figurski M. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. 2017. Vol. 17, Is. 10. id. 2298. DOI: 10.3390/s1710229838. Galushko V. G. Frequency-and-Angular Sounding of the Iionosphere. Telecomm. Radio Eng. 1997. Vol. 51, Is. 6-7. P 1–6. DOI: 10.1615/TelecomRadEng.v51.i6-7.1039. Galushko V. G., Kascheev A. S., Paznukhov V. V., Yampolski Y. M., and Reinisch B. W. Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves. Radio Sci. 2008. Vol. 43, Is. 4. id. RS4013. DOI: 10.1029/2007RS00373540. Beley V. S., Galushko V. G., and Yampolski Y. M. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci. 1995. Vol. 30, Is. 6. P. 1739–1752. DOI: 10.1029/95RS0199241. Пикулик И. И., Кащеев С. Б., Галушко В. Г., Ямпольский Ю.М. Приемный КВ комплекс для частотно-углового зондирования ионосферных возмущений в Антарктике. Украиїнський антарктичний журнал. 2003. №1. C. 61–69. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128125/08-Pikulin.pdf (дата обращения: 27.03.2020).42. Galushko V. G., Kashcheyev A. S., Kashcheyev S. B., Koloskov A. V., Pikulik I. I., Yampolski Y. M., Litvinov V. A., Milinevsky G. P., and Rakusa-Suszczewski S. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys. 2007. Vol. 69, Is. 4-5. P. 403–410. DOI: 10.1016/j.jastp.2006.05.01043. Belyey V. S., Galushko V. G., Paznukhov D., Reinisch B. W., and Yampolsky Y. M. HF Radar Sounding of TIDs with the Use of the DPS System and Signals from Broadcasting Stations. Proceedings of the Progress in Electromagnetics Research Symp. PIERS-2000. (July 5-14, 2000. Cambridge). Cambridge, MA, USA, 2000. P. 602.44. Galushko V. G., Beley V. S., Koloskov A. V., Yampolski Y. M., Paznukhov V. V., Reinisch B. W., Foster J. C., and Erickson P. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci. 2003. Vol. 38, Is. 6. id. 1102. DOI: 10.1029/2002RS00286145. Reinisch B., Galkin I., Belehaki A., Paznukhov V., Huang X., Altadill D., Buresova D., Mielich J., Verhulst T., Stankov S., Blanch E., Kouba D., Hamel R., Kozlov A., Tsagouri I., Mouzakis A., Messerotti M., Parkinson M., and Ishii M. Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances. Radio Sci. 2018. Vol. 53, Is. 3. P. 365–378. DOI: 10.1002/2017RS00626346. Колосков А. В., Ямпольский Ю. М., Зализовский А. В., Галушко В. Г., Кащеев А. С., Ла Хоз С., Брекке А., Белей В. С., Ритвелд М. Т. Сеть Интернет-управляемых ВЧ приемников для ионосферных исследований. Радіофизіка і радіоастрономія. 2014. T. 19, № 4. C. 324–335. DOI: 10.15407/rpra19.04.32447. Эталонные сигналы частоты и времени. Характеристики и программы передач через радиостанции, телевидение и сеть звукового вещания. Бюллетень. Под ред. Г. Т. Черенкова. Москва: Издательство стандартов, 1979. 27 c.48. PARUS-A Archive. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences. Last updated: 2020. URL: https://www.izmiran.ru/ionosphere/moscow/text/ (дата обращения: 27.03.2020).49. Сомсиков В. М. Солнечный терминатор и динамика атмосферы. Алма-Ата: Наука, 1983. 192 с.50. Friedman V. A. A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise. IEEE Trans. Signal Process. 1994. Vol 42, Is. 6. P. 1565–1569. DOI: 10.1109/78.28697851. Резниченко А. И., Колосков А. В., Ямпольский Ю. М. Мониторинг регулярных и спорадических ионосферных вариаций на односкачковых ВЧ радиолиниях. Радіофізика і радіоастрономія. 2018. Т. 23, № 4. С. 266–279. DOI: 10.15407/rpra23.04.26652. Medvedev А. V., Ratovsky K. G., Tolstikov M. V., Oinats A. V., Alsatkin S. S., and Zherebtsov G. A. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. Space Phys. 2017. Vol. 122, Is. 7. P. 7567–7580. DOI: 10.1002/2017JA02410353. Oliver W. L., Otsuka Y., Sato M., Takami T., and Fukao S. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. Space Phys. 1997. Vol. 102, Is. A7. P. 14499–14512. DOI: 10.1029/97JA0049154. Лизунов Г. В, Леонтьев А. Ю. Высота проникновения в ионосферу внутренних атмосферных гравитационных волн. Космічна наука і технологія. 2014. T. 20, № 4. С. 31–41. DOI: 10.15407/knit2014.04.03155. Boška J., Šauli P., Altadill D., Solé J. G., and Alberca L. F. Diurnal Variation of Gravity Wave Activity at Midlatitudes in the Ionospheric F region. Stud. Geophys. Geod. 2003. Vol. 47, Is. 3. P. 579–586. DOI: 10.1023/A:102476361850556. Kotake N., Otsuka Y., Ogawa T., Tsugawa T., and Saito A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space. 2007. Vol. 59, Is. 2. P. 95–102. DOI: 10.1186/BF0335268157. K-Indexes of geomagnetic activity. Department of Radiophysics of Geospace, Institute of Radio Astronomy of the National Academy of Sciences of Ukraine. URL: http://geospace.com.ua/data/metmag_ki.php (дата обращения: 27.03.2020). Видавничий дім «Академперіодика» 2020-05-22 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1332 10.15407/rpra25.02.118 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 2 (2020); 118 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 2 (2020); 118 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 2 (2020); 118 2415-7007 1027-9636 10.15407/rpra25.02 ru http://rpra-journal.org.ua/index.php/ra/article/view/1332/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY