THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM
Purpose: High resolution investigation of spectral lines of space sources requires low intrinsic noise of the radio telescope receiving system. It is provided with both input cryogenic amplifiers and low phase noise of local oscillators. To make spectral studies, it is neces ary to be able to tune t...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2020
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1335 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1335 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2020-09-23T10:29:18Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
antenna self noise local oscillator receiving system radio telescope RT-32 spectral lines |
| spellingShingle |
antenna self noise local oscillator receiving system radio telescope RT-32 spectral lines Ulyanov, O. M. Zakharenko, V. V. Alekseev, E. A. Reznichenko, O. M. Kulahin, I. O. Budnikov, V. V. Prisiazhnii, V. I. Poikhalo, A. V. Voytyuk, V. V. Mamarev, V. M. Ozhinskyi, V. V. Vlasenko, V. P. Chmil, V. M. Sunduchkov, I. K. Berdar, M. M. Lebed, V. I. Palamar, M. I. Chaikovskii, A. V. Pasternak, Yu. V. Strembitskii, M. A. Natarov, M. P. Steshenko, S. O. Glamazdin, V. V. Shubnyi, O. I. Kyrylenko, A. O. Kulyk, D. Yu. THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| topic_facet |
antenna self noise local oscillator receiving system radio telescope RT-32 spectral lines antenna self noise local oscillator receiving system radio telescope RT-32 spectral lines антена власний шум гетеродин приймальна система радіотелескоп РТ-32 спектральні лінії |
| format |
Article |
| author |
Ulyanov, O. M. Zakharenko, V. V. Alekseev, E. A. Reznichenko, O. M. Kulahin, I. O. Budnikov, V. V. Prisiazhnii, V. I. Poikhalo, A. V. Voytyuk, V. V. Mamarev, V. M. Ozhinskyi, V. V. Vlasenko, V. P. Chmil, V. M. Sunduchkov, I. K. Berdar, M. M. Lebed, V. I. Palamar, M. I. Chaikovskii, A. V. Pasternak, Yu. V. Strembitskii, M. A. Natarov, M. P. Steshenko, S. O. Glamazdin, V. V. Shubnyi, O. I. Kyrylenko, A. O. Kulyk, D. Yu. |
| author_facet |
Ulyanov, O. M. Zakharenko, V. V. Alekseev, E. A. Reznichenko, O. M. Kulahin, I. O. Budnikov, V. V. Prisiazhnii, V. I. Poikhalo, A. V. Voytyuk, V. V. Mamarev, V. M. Ozhinskyi, V. V. Vlasenko, V. P. Chmil, V. M. Sunduchkov, I. K. Berdar, M. M. Lebed, V. I. Palamar, M. I. Chaikovskii, A. V. Pasternak, Yu. V. Strembitskii, M. A. Natarov, M. P. Steshenko, S. O. Glamazdin, V. V. Shubnyi, O. I. Kyrylenko, A. O. Kulyk, D. Yu. |
| author_sort |
Ulyanov, O. M. |
| title |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| title_short |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| title_full |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| title_fullStr |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| title_full_unstemmed |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM |
| title_sort |
rt-32 radio telescope construction based on the mark-4b antenna system. 3. local oscillators and self-noise of the receiving system |
| title_alt |
THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM СТВОРЕННЯ РАДІОТЕЛЕСКОПУ РТ-32 НА БАЗІ АНТЕННОЇ СИСТЕМИ MARK-4B. 3. ГЕТЕРОДИНИ ТА ВЛАСНІ ШУМИ ПРИЙМАЛЬНОЇ СИСТЕМИ |
| description |
Purpose: High resolution investigation of spectral lines of space sources requires low intrinsic noise of the radio telescope receiving system. It is provided with both input cryogenic amplifiers and low phase noise of local oscillators. To make spectral studies, it is neces ary to be able to tune the frequencies of local oscillators with a small frequency step. The paper presents the results of developing the frequency synthesizers, which simultaneously provide both a very high frequency resolution and low level of phase noise. The results of measurements of natural noise of the RT-32 radio telescope radio receiving systems are given also.Design/methodology/approach: The RT-32 receiving systems are constructed as heterodyne receivers with two stages of frequency conversion. Tuning of receiving systems with a frequency step of 10 or 20 MHz is provided by local oscillators of the first frequency conversion stage, and precise tuning is provided due to the ultra-high resolution 0.0001 MHz) of DDS-based (direct digital synthesizer) local oscillators of the second frequency conversion stage.Findings: It is shown that the application of direct digital synthesizers is possible only with the low values of frequency multiplication factors, as well as under the conditions of careful filtering of all reference signals. The parameters of the local oscillators were measured with the N9951A spectrum analyzer (Keysight Technologies) with the high resolution and wide dynamic range. To measure the radio telescope receiving systemnoise characteristics, a special matched loads with the possibility of cooling down to the liquid nitrogen temperature were made. The noise temperature measurements were made in different cross sections of the RT-32 receiving system. Comparison of such measurements in different configurations makes it possible to provide a preliminary estimation of the RT-32 self noise in the C- and K-bands.Conclusions: The results of measurements of self noise of radio receiving systems and phase noise of local oscillators of the RT-32 radio telescope show that within the C-band the radio telescope is capable to perform high-sensitive studies in both a wide frequency band and a narrow frequency band with the high spectral resolution. Within the K-band, the natural noise is comparable (≈60÷80 K) with the external noise that also allows studying the radiation of maser radio sources. Key words: antenna, self noise, local oscillator, receiving system,radio telescope, RT-32, spectral lines Manuscript submitted 15.07.2020 Radio phys. radio astron. 2020, 25(3): 175-192REFERENCES1. ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK, V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y., KONOVALENKO, A. A., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 87–116. DOI: https://doi.org/10.15407/rpra24.02.0872. ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., SHULGA, V. M., ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK ,V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y. and PYLYPENKO, A. M., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System.1. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron. vol. 24, no. 3, pp. 163–183. DOI: https://doi.org/10.15407/rpra24.03.1633. WOODBURN, L., NATUSCH, T., WESTON, S., THOMASSON, P., GODWIN, M., GRANET, C. and GULYAEV, S., 2015. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust. vol. 32, id. e017. DOI: https://doi.org/10.1017/pasa.2015.134. YONEKURA, Y., SAITO, Y., SUGIYAMA, K., SOON, K. L., MOMOSE, M., YOKOSAWA, M., OGAWA, H., KIMURA, K., ABE, Y., NISHIMURA, A., HASEGAWA, Y., FUJISAWA, K., OHYAMA, T., KONO, Y., MIYAMOTO, Y., SAWADA-SATOH, S., KOBAYASHI, H., KAWAGUCHI, N., HONMA, M., SHIBATA, K. M., SATO, K., UENO, Y., JIKE, T., TAMURA, Y., HIROTA, T., MIYAZAKI, A., NIINUMA, K., SORAI, K., TAKABA, H., HACHISUKA, K., KONDO, T., SEKIDO, M., MURATA, Y., NAKAI, N. and OMODAKA, T., 2016. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn. vol. 68, is. 5, id. 74. DOI: https://doi.org/10.1093/pasj/psw0455. BELLOCHE, A., MESHCHERYAKOV, A. A., GARROD, R. T., ILYUSHIN, V. V., ALEKSEEV, E. A., MOTIYENKO, R. A., MARGULÈS, L., MÜLLER, H. S. P. and MENTEN, K. M., 2017. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamid. Astron. Astrophys. vol. 601, id. A49. DOI: https://doi.org/10.1051/0004-6361/2016297246. PENG, H., WU, Z., ZHANG, B., CHEN, Y., ZHENG, X., JIANG, D., SHEN, Z., CHEN, X. and SOTNIKOVA, YU. V., 2020. Radio properties of the OH megamaser galaxy IRAS 02524+2046. Astron. Astrophys.vol. 638, id. A78. DOI: https://doi.org/10.1051/0004-6361/2020375597. GENTILE, K. and CUSHING, R. 1999. A Technical Tutorial on Digital Signal Synthesis, 1999 [online]. Analog Devices Inc. [viewed 25 July 2020]. Available from: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html8. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M.,VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEß-MEIER, J.-M., 2016. Digital Receiversfor Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S22511717164101059. TEXAS INSTRUMENTS INC., 2019. LMX2595 20-GHz Wideband PLLATINUM™ RF Synthesizer With Phase Synchronization and JESD204B Support. Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.ti.com/lit/gpn/lmx259510. ANALOG DEVICES INC., 2020. HMC814LC3B, SMT GaAs MMIC x2 Active frequency multiplier, 13 - 24.6 GHz output. HMC814LC3B Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc814.pdf11. ANALOG DEVICES INC., 2019. Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer. AD9913 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9913.pdf12. ANALOG DEVICES INC., 2016. 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC. AD9914 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf13. CUSHING, R., 2000. Single-Sideband Upconversion of Quadrature DDS Signals to the 800-to-2500-MHz Band. Analog Dialogue [online]. vol. 34, no. 3 [viewed 25 July 2020]. Available from: URL: https://www.analog.com/media/en/analog-dialogue/volume-34/number-1/articles/single-sideband-upconversion-of-quadrature-dds-signals.pdf14. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12, no. 2, pp. 205–213. (in Russian).15. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2011. Millimeter- and Submillimeter-Wave Spectrometers on the Basis of Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.10016. ALEKSEEV, E. A., ILYUSHIN, V. V. and MESCHERYAKOV, A. A., 2014. High-Precision Microwave Spectrometer with Sub-Doppler Spectral Resolution. Radio Phys. Radio Astron. vol. 19, no. 4, pp. 364–374. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.36417. ANALOG DEVICES INC., 2006. DC-to-2.5 GHz High IP3 Active Mixer. AD8343 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8343.pdf18. ANALOG DEVICES INC., 2017. Wideband Synthesizer with Integrated VCO. ADF4351 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf19. ANALOG DEVICES INC., 2016. MicroConverter® Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU. ADuC845/ADuC847/ADuC848 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC845_847_848.pdf20. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2017. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. vol. 54, is. 6, pp. 42–53. DOI: https://doi.org/10.1515/lpts-2017-0040 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2020 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1335 |
| work_keys_str_mv |
AT ulyanovom thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT zakharenkovv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT alekseevea thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT reznichenkoom thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kulahinio thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT budnikovvv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT prisiazhniivi thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT poikhaloav thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT voytyukvv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT mamarevvm thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT ozhinskyivv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT vlasenkovp thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT chmilvm thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT sunduchkovik thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT berdarmm thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT lebedvi thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT palamarmi thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT chaikovskiiav thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT pasternakyuv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT strembitskiima thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT natarovmp thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT steshenkoso thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT glamazdinvv thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT shubnyioi thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kyrylenkoao thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kulykdyu thert32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT ulyanovom stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT zakharenkovv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT alekseevea stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT reznichenkoom stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT kulahinio stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT budnikovvv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT prisiazhniivi stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT poikhaloav stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT voytyukvv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT mamarevvm stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT ozhinskyivv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT vlasenkovp stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT chmilvm stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT sunduchkovik stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT berdarmm stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT lebedvi stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT palamarmi stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT chaikovskiiav stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT pasternakyuv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT strembitskiima stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT natarovmp stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT steshenkoso stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT glamazdinvv stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT shubnyioi stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT kyrylenkoao stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT kulykdyu stvorennâradíoteleskopurt32nabazíantennoísistemimark4b3geterodinitavlasníšumiprijmalʹnoísistemi AT ulyanovom rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT zakharenkovv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT alekseevea rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT reznichenkoom rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kulahinio rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT budnikovvv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT prisiazhniivi rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT poikhaloav rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT voytyukvv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT mamarevvm rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT ozhinskyivv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT vlasenkovp rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT chmilvm rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT sunduchkovik rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT berdarmm rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT lebedvi rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT palamarmi rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT chaikovskiiav rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT pasternakyuv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT strembitskiima rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT natarovmp rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT steshenkoso rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT glamazdinvv rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT shubnyioi rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kyrylenkoao rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem AT kulykdyu rt32radiotelescopeconstructionbasedonthemark4bantennasystem3localoscillatorsandselfnoiseofthereceivingsystem |
| first_indexed |
2025-12-02T15:32:06Z |
| last_indexed |
2025-12-02T15:32:06Z |
| _version_ |
1850836445390962688 |
| spelling |
rpra-journalorgua-article-13352020-09-23T10:29:18Z THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM THE RT-32 RADIO TELESCOPE CONSTRUCTION BASED ON THE MARK-4B ANTENNA SYSTEM. 3. LOCAL OSCILLATORS AND SELF-NOISE OF THE RECEIVING SYSTEM СТВОРЕННЯ РАДІОТЕЛЕСКОПУ РТ-32 НА БАЗІ АНТЕННОЇ СИСТЕМИ MARK-4B. 3. ГЕТЕРОДИНИ ТА ВЛАСНІ ШУМИ ПРИЙМАЛЬНОЇ СИСТЕМИ Ulyanov, O. M. Zakharenko, V. V. Alekseev, E. A. Reznichenko, O. M. Kulahin, I. O. Budnikov, V. V. Prisiazhnii, V. I. Poikhalo, A. V. Voytyuk, V. V. Mamarev, V. M. Ozhinskyi, V. V. Vlasenko, V. P. Chmil, V. M. Sunduchkov, I. K. Berdar, M. M. Lebed, V. I. Palamar, M. I. Chaikovskii, A. V. Pasternak, Yu. V. Strembitskii, M. A. Natarov, M. P. Steshenko, S. O. Glamazdin, V. V. Shubnyi, O. I. Kyrylenko, A. O. Kulyk, D. Yu. antenna; self noise; local oscillator; receiving system; radio telescope; RT-32; spectral lines antenna self noise; local oscillator; receiving system; radio telescope; RT-32; spectral lines антена; власний шум; гетеродин; приймальна система; радіотелескоп; РТ-32; спектральні лінії Purpose: High resolution investigation of spectral lines of space sources requires low intrinsic noise of the radio telescope receiving system. It is provided with both input cryogenic amplifiers and low phase noise of local oscillators. To make spectral studies, it is neces ary to be able to tune the frequencies of local oscillators with a small frequency step. The paper presents the results of developing the frequency synthesizers, which simultaneously provide both a very high frequency resolution and low level of phase noise. The results of measurements of natural noise of the RT-32 radio telescope radio receiving systems are given also.Design/methodology/approach: The RT-32 receiving systems are constructed as heterodyne receivers with two stages of frequency conversion. Tuning of receiving systems with a frequency step of 10 or 20 MHz is provided by local oscillators of the first frequency conversion stage, and precise tuning is provided due to the ultra-high resolution 0.0001 MHz) of DDS-based (direct digital synthesizer) local oscillators of the second frequency conversion stage.Findings: It is shown that the application of direct digital synthesizers is possible only with the low values of frequency multiplication factors, as well as under the conditions of careful filtering of all reference signals. The parameters of the local oscillators were measured with the N9951A spectrum analyzer (Keysight Technologies) with the high resolution and wide dynamic range. To measure the radio telescope receiving systemnoise characteristics, a special matched loads with the possibility of cooling down to the liquid nitrogen temperature were made. The noise temperature measurements were made in different cross sections of the RT-32 receiving system. Comparison of such measurements in different configurations makes it possible to provide a preliminary estimation of the RT-32 self noise in the C- and K-bands.Conclusions: The results of measurements of self noise of radio receiving systems and phase noise of local oscillators of the RT-32 radio telescope show that within the C-band the radio telescope is capable to perform high-sensitive studies in both a wide frequency band and a narrow frequency band with the high spectral resolution. Within the K-band, the natural noise is comparable (≈60÷80 K) with the external noise that also allows studying the radiation of maser radio sources. Key words: antenna, self noise, local oscillator, receiving system,radio telescope, RT-32, spectral lines Manuscript submitted 15.07.2020 Radio phys. radio astron. 2020, 25(3): 175-192REFERENCES1. ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK, V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y., KONOVALENKO, A. A., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 87–116. DOI: https://doi.org/10.15407/rpra24.02.0872. ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., SHULGA, V. M., ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK ,V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y. and PYLYPENKO, A. M., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System.1. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron. vol. 24, no. 3, pp. 163–183. DOI: https://doi.org/10.15407/rpra24.03.1633. WOODBURN, L., NATUSCH, T., WESTON, S., THOMASSON, P., GODWIN, M., GRANET, C. and GULYAEV, S., 2015. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust. vol. 32, id. e017. DOI: https://doi.org/10.1017/pasa.2015.134. YONEKURA, Y., SAITO, Y., SUGIYAMA, K., SOON, K. L., MOMOSE, M., YOKOSAWA, M., OGAWA, H., KIMURA, K., ABE, Y., NISHIMURA, A., HASEGAWA, Y., FUJISAWA, K., OHYAMA, T., KONO, Y., MIYAMOTO, Y., SAWADA-SATOH, S., KOBAYASHI, H., KAWAGUCHI, N., HONMA, M., SHIBATA, K. M., SATO, K., UENO, Y., JIKE, T., TAMURA, Y., HIROTA, T., MIYAZAKI, A., NIINUMA, K., SORAI, K., TAKABA, H., HACHISUKA, K., KONDO, T., SEKIDO, M., MURATA, Y., NAKAI, N. and OMODAKA, T., 2016. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn. vol. 68, is. 5, id. 74. DOI: https://doi.org/10.1093/pasj/psw0455. BELLOCHE, A., MESHCHERYAKOV, A. A., GARROD, R. T., ILYUSHIN, V. V., ALEKSEEV, E. A., MOTIYENKO, R. A., MARGULÈS, L., MÜLLER, H. S. P. and MENTEN, K. M., 2017. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamid. Astron. Astrophys. vol. 601, id. A49. DOI: https://doi.org/10.1051/0004-6361/2016297246. PENG, H., WU, Z., ZHANG, B., CHEN, Y., ZHENG, X., JIANG, D., SHEN, Z., CHEN, X. and SOTNIKOVA, YU. V., 2020. Radio properties of the OH megamaser galaxy IRAS 02524+2046. Astron. Astrophys.vol. 638, id. A78. DOI: https://doi.org/10.1051/0004-6361/2020375597. GENTILE, K. and CUSHING, R. 1999. A Technical Tutorial on Digital Signal Synthesis, 1999 [online]. Analog Devices Inc. [viewed 25 July 2020]. Available from: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html8. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M.,VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEß-MEIER, J.-M., 2016. Digital Receiversfor Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S22511717164101059. TEXAS INSTRUMENTS INC., 2019. LMX2595 20-GHz Wideband PLLATINUM™ RF Synthesizer With Phase Synchronization and JESD204B Support. Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.ti.com/lit/gpn/lmx259510. ANALOG DEVICES INC., 2020. HMC814LC3B, SMT GaAs MMIC x2 Active frequency multiplier, 13 - 24.6 GHz output. HMC814LC3B Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc814.pdf11. ANALOG DEVICES INC., 2019. Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer. AD9913 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9913.pdf12. ANALOG DEVICES INC., 2016. 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC. AD9914 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf13. CUSHING, R., 2000. Single-Sideband Upconversion of Quadrature DDS Signals to the 800-to-2500-MHz Band. Analog Dialogue [online]. vol. 34, no. 3 [viewed 25 July 2020]. Available from: URL: https://www.analog.com/media/en/analog-dialogue/volume-34/number-1/articles/single-sideband-upconversion-of-quadrature-dds-signals.pdf14. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12, no. 2, pp. 205–213. (in Russian).15. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2011. Millimeter- and Submillimeter-Wave Spectrometers on the Basis of Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.10016. ALEKSEEV, E. A., ILYUSHIN, V. V. and MESCHERYAKOV, A. A., 2014. High-Precision Microwave Spectrometer with Sub-Doppler Spectral Resolution. Radio Phys. Radio Astron. vol. 19, no. 4, pp. 364–374. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.36417. ANALOG DEVICES INC., 2006. DC-to-2.5 GHz High IP3 Active Mixer. AD8343 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8343.pdf18. ANALOG DEVICES INC., 2017. Wideband Synthesizer with Integrated VCO. ADF4351 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf19. ANALOG DEVICES INC., 2016. MicroConverter® Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU. ADuC845/ADuC847/ADuC848 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC845_847_848.pdf20. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2017. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. vol. 54, is. 6, pp. 42–53. DOI: https://doi.org/10.1515/lpts-2017-0040 Purpose: High resolution investigation of spectral lines of space sources requires low intrinsic noise of the radio telescope receiving system. It is provided with both input cryogenic amplifiers and low phase noise of local oscillators. To make spectral studies, it is neces ary to be able to tune the frequencies of local oscillators with a small frequency step. The paper presents the results of developing the frequency synthesizers, which simultaneously provide both a very high frequency resolution and low level of phase noise. The results of measurements of natural noise of the RT-32 radio telescope radio receiving systems are given also.Design/methodology/approach: The RT-32 receiving systems are constructed as heterodyne receivers with two stages of frequency conversion. Tuning of receiving systems with a frequency step of 10 or 20 MHz is provided by local oscillators of the first frequency conversion stage, and precise tuning is provided due to the ultra-high resolution (0.0001 MHz) of DDS-based (direct digital synthesizer) local oscillators of the second frequency conversion stage.Findings: It is shown that the application of direct digital synthesizersis possible only with the low values of frequency multiplication factors, as well as under the conditions of careful filtering of all reference signals. The parameters of the local oscillators were measured with the N9951A spectrum analyzer (Keysight Technologies) with the high resolution and wide dynamic range. To measure the radio telescope receiving systemnoise characteristics, a special matched loads with the possibility of cooling down to the liquid nitrogen temperature were made. The noise temperature measurements were made in different cross sections of the RT-32 receiving system. Comparison of such measurements in different configurations makes it possible to provide a preliminary estimation of the RT-32 self noise in the C- and K-bands.Conclusions: The results of measurements of self noise of radio receiving systems and phase noise of local oscillators of the RT-32 radio telescope show that within the C-band the radio telescope is capable to perform high-sensitive studies in both a wide frequency band and a narrow frequency band with the high spectral resolution. Within the K-band, the natural noise is comparable (≈60÷80 K) with the external noise that also allows studying the radiation of maser radio sources. Key words: antenna, self noise, local oscillator, receiving system, radio telescope, RT-32, spectral lines Manuscript submitted 15.07.2020 Radio phys. radio astron. 2020, 25(3): 175-192REFERENCES1. ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK, V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y., KONOVALENKO, A. A., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 87–116. DOI: https://doi.org/10.15407/rpra24.02.0872. ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., SHULGA, V. M., ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK ,V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y. and PYLYPENKO, A. M., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System.1. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron. vol. 24, no. 3, pp. 163–183. DOI: https://doi.org/10.15407/rpra24.03.1633. WOODBURN, L., NATUSCH, T., WESTON, S., THOMASSON, P., GODWIN, M., GRANET, C. and GULYAEV, S., 2015. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust. vol. 32, id. e017. DOI: https://doi.org/10.1017/pasa.2015.134. YONEKURA, Y., SAITO, Y., SUGIYAMA, K., SOON, K. L., MOMOSE, M., YOKOSAWA, M., OGAWA, H., KIMURA, K., ABE, Y., NISHIMURA, A., HASEGAWA, Y., FUJISAWA, K., OHYAMA, T., KONO, Y., MIYAMOTO, Y., SAWADA-SATOH, S., KOBAYASHI, H., KAWAGUCHI, N., HONMA, M., SHIBATA, K. M., SATO, K., UENO, Y., JIKE, T., TAMURA, Y., HIROTA, T., MIYAZAKI, A., NIINUMA, K., SORAI, K., TAKABA, H., HACHISUKA, K., KONDO, T., SEKIDO, M., MURATA, Y., NAKAI, N. and OMODAKA, T., 2016. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn. vol. 68, is. 5, id. 74. DOI: https://doi.org/10.1093/pasj/psw0455. BELLOCHE, A., MESHCHERYAKOV, A. A., GARROD, R. T., ILYUSHIN, V. V., ALEKSEEV, E. A., MOTIYENKO, R. A., MARGULÈS, L., MÜLLER, H. S. P. and MENTEN, K. M., 2017. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamid. Astron. Astrophys. vol. 601, id. A49. DOI: https://doi.org/10.1051/0004-6361/2016297246. PENG, H., WU, Z., ZHANG, B., CHEN, Y., ZHENG, X., JIANG, D., SHEN, Z., CHEN, X. and SOTNIKOVA, YU. V., 2020. Radio properties of the OH megamaser galaxy IRAS 02524+2046. Astron. Astrophys.vol. 638, id. A78. DOI: https://doi.org/10.1051/0004-6361/2020375597. GENTILE, K. and CUSHING, R. 1999. A Technical Tutorial on Digital Signal Synthesis, 1999 [online]. Analog Devices Inc. [viewed 25 July 2020]. Available from: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html8. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M.,VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEß-MEIER, J.-M., 2016. Digital Receiversfor Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S22511717164101059. TEXAS INSTRUMENTS INC., 2019. LMX2595 20-GHz Wideband PLLATINUM™ RF Synthesizer With Phase Synchronization and JESD204B Support. Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.ti.com/lit/gpn/lmx259510. ANALOG DEVICES INC., 2020. HMC814LC3B, SMT GaAs MMIC x2 Active frequency multiplier, 13 - 24.6 GHz output. HMC814LC3B Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc814.pdf11. ANALOG DEVICES INC., 2019. Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer. AD9913 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9913.pdf12. ANALOG DEVICES INC., 2016. 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC. AD9914 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf13. CUSHING, R., 2000. Single-Sideband Upconversion of Quadrature DDS Signals to the 800-to-2500-MHz Band. Analog Dialogue [online]. vol. 34, no. 3 [viewed 25 July 2020]. Available from: URL: https://www.analog.com/media/en/analog-dialogue/volume-34/number-1/articles/single-sideband-upconversion-of-quadrature-dds-signals.pdf14. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12, no. 2, pp. 205–213. (in Russian).15. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2011. Millimeter- and Submillimeter-Wave Spectrometers on the Basis of Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.10016. ALEKSEEV, E. A., ILYUSHIN, V. V. and MESCHERYAKOV, A. A., 2014. High-Precision Microwave Spectrometer with Sub-Doppler Spectral Resolution. Radio Phys. Radio Astron. vol. 19, no. 4, pp. 364–374. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.36417. ANALOG DEVICES INC., 2006. DC-to-2.5 GHz High IP3 Active Mixer. AD8343 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8343.pdf18. ANALOG DEVICES INC., 2017. Wideband Synthesizer with Integrated VCO. ADF4351 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf19. ANALOG DEVICES INC., 2016. MicroConverter® Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU. ADuC845/ADuC847/ADuC848 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC845_847_848.pdf20. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2017. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. vol. 54, is. 6, pp. 42–53. DOI: https://doi.org/10.1515/lpts-2017-0040 УДК 520.272.2: 621.396.677.494Предмет і мета роботи: Дослідження з високою роздільною здатністю спектральних ліній космічних радіоджерел потребує низьких власних шумів приймальної системи радіотелескопу. Вони забезпечуються як вхідними кріогенними підсилювачами, так і низькими фазовими шумами гетеродинів. Для виконання спектральних досліджень необхідно мати можливість перестроювання частот гетеродинів з малим частотним кроком. В роботі наведено результати розроблення синтезаторів частоти, які одночасно забезпечують як дуже малий частотний крок, та і низький рівень фазових шумів. Наведено також результати вимірювань власних шумів кріогенних приймальних систем радіотелескопу РТ-32.Методи і методологія: Приймальні системи РТ-32 створені за схемами супергетеродинних приймачів з двома ступенями перетворення частоти. Настроювання приймальної системи з частотним кроком 10 або 20 МГц забезпечується гетеродинами першого перетворення частоти, а точне настроювання відбувається завдяки надвисокій роздільній здатності (0.0001 МГц) гетеродинів другого перетворення частоти, які створено на основі синтезаторів прямого цифрового синтезу.Результати: Показано, що застосування синтезаторів прямого цифрового синтезу можливе лише з низькими значеннями коефіцієнтів множення частоти, а також за умов ретельної фільтрації усіх опорних сигналів. Вимірювання параметрів гетеродинів проводилось за допомогою спектроаналізатора N9951A (Keysight Technologies), який має високу роздільну здатність та широкий динамічний діапазон. Для вимірювань шумових характеристик радіоприймальної системи радіотелескопу було виготовлено спеціальне узгоджене навантаження з можливістю охолодження до температури рідкого азоту. Вимірювання шумової температури було проведене в різних розрізах приймального тракту РТ-32. Співставлення таких вимірювань в різних конфігураціях дає можливість зробити попередню оцінку власних шумів РТ-32 в С та K діапазонах.Висновок: Результати вимірювань власних шумів радіоприймальних систем та фазових шумів гетеродинів радіотелескопу РТ-32 показують, що радіотелескоп в С-діапазоні здатен виконувати високочутливі дослідження як в широкій смузі частот, так і у вузькій смузі частот з високою спектральною роздільною здатністю. В K-діапазоні власні шуми є співставними (≈60÷80 К) з зовнішніми шумами, що також дає можливість досліджувати випромінювання мазерних джерел.Ключові слова: антена, власний шум, гетеродин, приймальна система, радіотелескоп, РТ-32, спектральні лінії Стаття надійшла до редакції 15.07.2020Radio phys. radio astron. 2020, 25(3): 175-192СПИСОК ЛІТЕРАТУРИ1. Ульянов О. М., Резниченко А. М., Захаренко В. В., Антюфеев А. В., Королев А. М., Патока А. Н., Присяжный В. И., Поихало А. В., Войтюк В. В., Мамарев В. Н., Ожинский В. В., Власенко В. П., Чмиль В. М., Лебедь, В. И., Паламар М. И., Чайковский А. В., Пастернак Ю. В., Стрембицкий М. А., Натаров М. П., Стешенко С. А., Гламаздин В. В., Шубный А. И., Кириленко А. А., Кулик Д. Ю., Коноваленко А. А., Литвиненко Л. Н., Яцкив Я. С. Создание радиотелескопа РТ-32 на базе антенной системы MARK-4B. 1. Проект модернизации и первые результаты. Радіофізика і радіоастрономія. 2019. Т. 24, № 2. С. 87–116. DOI:10.15407/rpra24.02.0872. Антюфеев А. В., Королев А. М., Патока А. Н., Шульга В. М., Ульянов О. М., Резниченко А. М., Захаренко В. В., Присяжный В. И., Поихало А. В., Войтюк В. В., Мамарев В. Н., Ожинский В. В., Власенко В. П, Чмиль В. М., Лебедь В. И., Паламар М. И., Чайковский А. В., Пастернак Ю. В., Стрембицкий М. А., Натаров М. П., Стешенко С. А., Гламаздин В. В., Шубний А. И., Кириленко А. А., Кулик Д. Ю., Пилипенко А. М. Создание радиотелескопа РТ-32 на базе антенной системы MARK-4B. 2. Оценка возможности проведения спектральных наблюдений радиоастрономических объектов. Радіофізика і радіоастрономія. 2019. Т. 24, № 03. С. 163–183. DOI: 10.15407/rpra24.03.1633. Woodburn L., Natusch T., Weston S., Thomasson P., Godwin M., Granet C., and Gulyaev S. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust. 2015. Vol. 32. id. e017. DOI: 10.1017/pasa.2015.13.4. Yonekura Y., Saito Y., Sugiyama K., Soon K. L., Momose M., Yokosawa M., Ogawa H., Kimura K., Abe Y., Nishimura A., Hasegawa Y., Fujisawa K., Ohyama T., Kono Y., Miyamoto Y., Sawada-Satoh S., Kobayashi H., Kawaguchi N., Honma M., Shibata K. M., Sato K., Ueno Y., Jike T., Tamura Y., Hirota T., Miyazaki A., Niinuma K., Sorai K., Takaba H., Hachisuka K., Kondo T., Sekido M., Murata Y., Nakai N., and Omodaka T. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn. 2016. Vol. 68, Is. 5. id. 74 DOI: 10.1093/pasj/psw0455. Belloche A., Meshcheryakov A. A., Garrod R.T., Ilyushin V. V., Alekseev E. A., Motiyenko R. A., Margulès L., Müller H. S. P., and Menten K. M. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamid. Astron. Astrophys. 2017. Vol. 601. id. A49. DOI: 10.1051/0004-6361/2016297246. Peng H., Wu Z., Zhang B., Chen Y., Zheng X., Jiang D., Shen Z., Chen X., and Sotnikova Yu. V. Radio properties of the OH megamaser galaxy IRAS 02524+2046. Astron. Astrophys. 2020. Vol. 638. id. A78. DOI: 10.1051/0004-6361/2020375597. Gentile K. and Cushing R. A Technical Tutorial on Digital Signal Synthesis, 1999. Analog Devices Inc. 1999. URL: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html8. Zakharenko V., Konovalenko A., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Koliadin V., Kalinichenko N., Stanislavsky A., Dorovskyy V., Shepelev V., Bubnov I., Yerin S., Melnik V., Koval A., Shevchuk N., Vasylieva I., Mylostna K., Shevtsova A., Skoryk A., Kravtsov I., Volvach Y., Plakhov M., Vasilenko N., Vasylkivskyi Y., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Ryabov V., Reznichenko A., Bortsov V., Lisachenko V., Kvasov G., Mukha D., Litvinenko G., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshyn O., Rucker H. O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., and Grießmeier J.-M. Digital Receiversfor Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. 2016. Vol. 5, Is. 4. id. 1641010. DOI: 10.1142/S22511717164101059. LMX2595 20-GHz Wideband PLLATINUM™ RF Synthesizer With Phase Synchronization and JESD204B Support. Data Sheet. Texas Instruments Inc. URL: https://www.ti.com/lit/gpn/lmx2595 (viewed: 30.07.2020).10. SMT GaAs MMIC x2 Active frequency multiplier, 13–24.6 GHz output. HMC814LC3B Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc814.pdf (viewed: 30.07.2020).11. Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer. AD9913 Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9913.pdf (viewed: 30.07.2020).12. 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC. AD9914 Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf (viewed: 30.07.2020).13. Cushing R. Single-Sideband Upconversion of Quadrature DDS Signals to the 800-to-2500-MHz Band. Analog Dialogue. 2000. Vol. 34, No. 3. URL: https://www.analog.com/media/en/analog-dialogue/volume-34/number-1/articles/single-sideband-upconversion-of-quadrature-ddssignals.pdf14. Алексеев Е. А., Захаренко В. В. Синтезатор прямого цифрового синтеза в микроволновой спектоскопии. Радioфізика і радіоастрономія. 2007. Т. 12, № 2. С. 205–213.15. Алексеев Е. А., Мотиенко Р. А., Маргулес Л. Спектрометры миллиметрового и субмиллиметрового диапазонов на основе синтезаторов прямого цифрового синтеза. Радioфізика і радіоастрономія. 2011. Т. 16, № 3. С. 313–327.16. Алексеев Е. А., Илюшин В. В., Мещеряков А. А. Высокоточный радиопектрометр с субдоплеровским спектральным разрешением. Радioфізика і радіоастрономія. 2014. Т. 19, № 4. С. 364–374.17. DC-to-2.5 GHz High IP3 Active Mixer. AD8343 Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8343.pdf (viewed: 30.07.2020).18. Wideband Synthesizer with Integrated VCO. ADF4351 Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf (viewed: 30.07.2020).19. MicroConverter® Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU. ADuC845/ADuC847/ADuC848 Data Sheet. Analog Devices Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC845_847_848.pdf(viewed: 30.07.2020).20. Bleiders M., Bezrukovs V., and Orbidans A. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. 2017. Vol. 54, Is. 6. P. 42–53. DOI: 0.1515/lpts-2017-0040 Видавничий дім «Академперіодика» 2020-09-10 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1335 10.15407/rpra25.03.175 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 3 (2020); 175 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 3 (2020); 175 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 3 (2020); 175 2415-7007 1027-9636 10.15407/rpra25.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1335/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY |