TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE

Purpose: One-dimensional wire diffraction gratings, usually being mounted on ring frames, are often used in quasi-optical instruments under the construction of functional devices of different usage. Such gratings have been thoroughly studied theoretically and experimentally at the millimeter wavelen...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Dzyubenko, M. I., Masalov, S. A., Kamenev, Yu. E., Kolenov, I. V., Pelipenko, V. P., Radionov, V. P., Dahov, N. F.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2020
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1340
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1340
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2020-09-23T10:29:18Z
collection OJS
language Ukrainian
topic wire grating
terahertz range
laser
transmission coefficient
spellingShingle wire grating
terahertz range
laser
transmission coefficient
Dzyubenko, M. I.
Masalov, S. A.
Kamenev, Yu. E.
Kolenov, I. V.
Pelipenko, V. P.
Radionov, V. P.
Dahov, N. F.
TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
topic_facet wire grating
terahertz range
laser
transmission coefficient
wire grating
terahertz range
laser
transmission coefficient
дротяна решітка
терагерцовий діапазон
лазер
коефіцієнт проходження
format Article
author Dzyubenko, M. I.
Masalov, S. A.
Kamenev, Yu. E.
Kolenov, I. V.
Pelipenko, V. P.
Radionov, V. P.
Dahov, N. F.
author_facet Dzyubenko, M. I.
Masalov, S. A.
Kamenev, Yu. E.
Kolenov, I. V.
Pelipenko, V. P.
Radionov, V. P.
Dahov, N. F.
author_sort Dzyubenko, M. I.
title TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
title_short TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
title_full TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
title_fullStr TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
title_full_unstemmed TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
title_sort transmission of terahertz radiation through one-dimensional wire gratings at different angles of incidence
title_alt TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE
ПРОХОДЖЕННЯ ВИПРОМІНЮВАННЯ ТЕРАГЕРЦОВОГО ДІАПАЗОНУ КРІЗЬ ОДНОВИМІРНІ ДРОТЯНІ РЕШІТКИ ПРИ РІЗНИХ КУТАХ ПАДІННЯ
description Purpose: One-dimensional wire diffraction gratings, usually being mounted on ring frames, are often used in quasi-optical instruments under the construction of functional devices of different usage. Such gratings have been thoroughly studied theoretically and experimentally at the millimeter wavelengths, where they are most widely used and realized in various constructions of instruments and systems. However, a number of design and technological features of such gratings, connected with making the polarizing devices cannot be always taken into account in theoretical models that requires additional experiments. This problem is especially relevant in the terahertz range, where there is a lack of experimental data. This work aims at experimental studying the properties of one-dimensional wire gratings in the terahertz range at different angles of incidence of electromagnetic waves and for different adjustment conditions, as well as practical recommendations concerning the measurement technique and the creation of various polarizing devices.Design/Methodology/Approach: A measuring device has been developed and manufactured, in which a gas-discharge HCN laser (at the wavelength of 337 mm) is used as a radiation source. The study of one-dimensional wire gratings of two types was carried out: grating No. 1 (conductor diameter 70 μm, period 400 mm) and grating No. 2 (conductor diameter 50 μm, period 200 μm). The gratings were installed on a rotary stand. The stepper motor provided rotation within ±90°. Measurements were made automatically with a 0.35° step. The coefficient of laser radiation transmission through the grating was investigated depending on the angle of incidence and the adjustment accuracy.Findings: Analysis of the obtained data shows that the experimental results correlate with the theoretical data. Moreover, the experimental data more fully characterize the properties of the gratings, taking into account their design and technological features, which are very difficult to take into account theoretically. The resonance maxima in the experimental dependences of the transmitted power on the angle of incidence coincide with the calculated data that makes it possible to develop a number of new measuring techniques. Recommendations are given for improving the measurement accuracy and for the practical use of the obtained results.Conclusions: The obtained experimental results allow taking into account some additional features of the diffraction gratings, as well as improving the measurement technique. This is useful for the development of new devices in the terahertz range.Key words: wire grating, terahertz range, laser, transmission coefficientManuscript submitted  02.07.2020Radio phys. radio astron. 2020, 25(3): 240-246REFERENCES1. KATSENELENBAUM, B. Z. and SHEVCHENKO, V. V., 1966. Quasi-Optics: Collection of Article. Moscow, Russia: Mir Publ. (in Russian).2. KISELEV, V. K., KOSTENKO, A. A., KHLOPOV, G. I. (ed) and YANOVSKY, M. S., 2013. Quasi-optical antenna-feeder systems: Monograph. Kharkiv, Ukraine: Kontrast Publ.3. WEINSTEIN, L. A., 1963. To the electrodynamic theory of gratings. Part 1. The ideal grating in free space. In: High Power Electronics. Moscow, Russia: AS USSR Publ. vol. 2, рр. 26–56. (in Russian).4. SHESTOPALOV, V. P., 1971. The Method of the Riemann-Gilbert Problem in the Theory of Wave Diffraction and Propagation. Kharkiv, Ukraine: KhGU Publ. (in Russian).5. MASALOV, S. A., SOLOGUB, V. G. and SHESTOPALOV, V. P., 1972. Plane electromagnetic wave diffraction by circular bar grating. Preprint. Kharkiv, Ukraine: IRE, NAS of Ukraine. no. 15. (in Russian).6. SHESTOPALOV, V. P., LITVINENKO, L. N., MASALOV, S. A. and SOLOGUB, V. G., 1973. Wave diffraction by gratings. Kharkiv, Ukraine: KhGU Publ. (in Russian).7. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, YU. K., 1986. Resonance scattering of waves. Vol. 1. Diffraction gratings. Kyiv, Ukraine: Naukova Dumka Publ. (in Russian).8. VOLKOV, A. A., GORSHUNOV, B. P., IRISOV, A. A., KOZLOV, G. V. and LEBEDEV, S. P., 1982. Electrodynamic properties of plane wire grids. J. Infrared Millim. Terahertz Waves. vol. 3, is. 1, pp. 19–43. DOI: https://doi.org/10.1007/BF010071999. GORSHUNOV, B. P., LEBEDEV, S. P. and MASALOV, S. A., 1984. Metal gratings application as phase plates for use at submm range. Zh. Tekh. Fiz. vol. 54, is. 4, pp. 825–827. (in Russian).10. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser emitting circularly polarized light. Sov. J. Quantum Electron. Vol. 20, is. 10, p. 1213. DOI: https://doi.org/10.1070/QE1990v020n10ABEH00744711. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2004. Measurement of Electrodinamic Parameters of One-Dimensional Wire Gratings in the Sub-Millimeter Wavelength Range. Telecomm. Radio Eng. vol. 63, is. 7-12, pp. 751–758. DOI: https://doi.org/10.1615/TelecomRadEng.v63.i8.9012. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2006. Method for determination of electrodynamic characteristics of one-dimensional wire grating. Ukrainian Patent No. 6285. 17.07.2006.13. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser with an adaptive output mirror. Quantum Electron. vol. 36, is. 9, pp. 849–852. DOI: https://doi.org/10.1070/QE2006v036n09ABEH01327914. BASANOV, B. V. and VETLUZHSKII, A. YU., 2008. Malyuzhinets effect in bulk diffraction gratings. Journal of Radio Electronics [online]. April, vol. 4 (in Russian)[viewed 8 June 2020]. Available from: http://jre.cplire.ru/jre/apr08/3/text.pdf15. SHESTOPALOV, V. P., KIRILENKO, A. A. and MASALOV, S. A., 1975. Reciprocity principle and some physical patterns of wave scattering by diffraction gratings. Bull. Acad. Sci. Ukrain. SSR. no. 3, pp. 8–18. (in Russian).16. MASALOV, S. A., SIRENKO, YU. K. and SHESTOPALOV, V. P., 1980. Malyuzhinets effect manifestation conditions in multi-periodic gratings. Pis’ma Zh. Tekh. Fiz. vol. 6, is. 16, pp. 998–1001. (in Russian).17. DZYUBENKO, M. I., KAMENEV, YU. E. and RADIONOV, V. P., 2017. Gas-discharge lasers of the terahertz range. Radiophys. Electron. vol. 22, no. 3, pp. 58–80. (in Russian). DOI: https://doi.org/10.15407/rej2017.03.05818. VALITOV, R. A. and SRETENSKIY, V. N., 1970. Radio Engineering Measurements. Moscow, Russia: Sovetskoe Radio Publ. (in Russian).
publisher Видавничий дім «Академперіодика»
publishDate 2020
url http://rpra-journal.org.ua/index.php/ra/article/view/1340
work_keys_str_mv AT dzyubenkomi transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT masalovsa transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT kamenevyue transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT kolenoviv transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT pelipenkovp transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT radionovvp transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT dahovnf transmissionofterahertzradiationthroughonedimensionalwiregratingsatdifferentanglesofincidence
AT dzyubenkomi prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT masalovsa prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT kamenevyue prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT kolenoviv prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT pelipenkovp prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT radionovvp prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
AT dahovnf prohodžennâvipromínûvannâteragercovogodíapazonukrízʹodnovimírnídrotânírešítkipriríznihkutahpadínnâ
first_indexed 2025-12-02T15:32:20Z
last_indexed 2025-12-02T15:32:20Z
_version_ 1850836445979213824
spelling rpra-journalorgua-article-13402020-09-23T10:29:18Z TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE TRANSMISSION OF TERAHERTZ RADIATION THROUGH ONE-DIMENSIONAL WIRE GRATINGS AT DIFFERENT ANGLES OF INCIDENCE ПРОХОДЖЕННЯ ВИПРОМІНЮВАННЯ ТЕРАГЕРЦОВОГО ДІАПАЗОНУ КРІЗЬ ОДНОВИМІРНІ ДРОТЯНІ РЕШІТКИ ПРИ РІЗНИХ КУТАХ ПАДІННЯ Dzyubenko, M. I. Masalov, S. A. Kamenev, Yu. E. Kolenov, I. V. Pelipenko, V. P. Radionov, V. P. Dahov, N. F. wire grating; terahertz range; laser; transmission coefficient wire grating; terahertz range; laser; transmission coefficient дротяна решітка; терагерцовий діапазон; лазер; коефіцієнт проходження Purpose: One-dimensional wire diffraction gratings, usually being mounted on ring frames, are often used in quasi-optical instruments under the construction of functional devices of different usage. Such gratings have been thoroughly studied theoretically and experimentally at the millimeter wavelengths, where they are most widely used and realized in various constructions of instruments and systems. However, a number of design and technological features of such gratings, connected with making the polarizing devices cannot be always taken into account in theoretical models that requires additional experiments. This problem is especially relevant in the terahertz range, where there is a lack of experimental data. This work aims at experimental studying the properties of one-dimensional wire gratings in the terahertz range at different angles of incidence of electromagnetic waves and for different adjustment conditions, as well as practical recommendations concerning the measurement technique and the creation of various polarizing devices.Design/Methodology/Approach: A measuring device has been developed and manufactured, in which a gas-discharge HCN laser (at the wavelength of 337 mm) is used as a radiation source. The study of one-dimensional wire gratings of two types was carried out: grating No. 1 (conductor diameter 70 μm, period 400 mm) and grating No. 2 (conductor diameter 50 μm, period 200 μm). The gratings were installed on a rotary stand. The stepper motor provided rotation within ±90°. Measurements were made automatically with a 0.35° step. The coefficient of laser radiation transmission through the grating was investigated depending on the angle of incidence and the adjustment accuracy.Findings: Analysis of the obtained data shows that the experimental results correlate with the theoretical data. Moreover, the experimental data more fully characterize the properties of the gratings, taking into account their design and technological features, which are very difficult to take into account theoretically. The resonance maxima in the experimental dependences of the transmitted power on the angle of incidence coincide with the calculated data that makes it possible to develop a number of new measuring techniques. Recommendations are given for improving the measurement accuracy and for the practical use of the obtained results.Conclusions: The obtained experimental results allow taking into account some additional features of the diffraction gratings, as well as improving the measurement technique. This is useful for the development of new devices in the terahertz range.Key words: wire grating, terahertz range, laser, transmission coefficientManuscript submitted  02.07.2020Radio phys. radio astron. 2020, 25(3): 240-246REFERENCES1. KATSENELENBAUM, B. Z. and SHEVCHENKO, V. V., 1966. Quasi-Optics: Collection of Article. Moscow, Russia: Mir Publ. (in Russian).2. KISELEV, V. K., KOSTENKO, A. A., KHLOPOV, G. I. (ed) and YANOVSKY, M. S., 2013. Quasi-optical antenna-feeder systems: Monograph. Kharkiv, Ukraine: Kontrast Publ.3. WEINSTEIN, L. A., 1963. To the electrodynamic theory of gratings. Part 1. The ideal grating in free space. In: High Power Electronics. Moscow, Russia: AS USSR Publ. vol. 2, рр. 26–56. (in Russian).4. SHESTOPALOV, V. P., 1971. The Method of the Riemann-Gilbert Problem in the Theory of Wave Diffraction and Propagation. Kharkiv, Ukraine: KhGU Publ. (in Russian).5. MASALOV, S. A., SOLOGUB, V. G. and SHESTOPALOV, V. P., 1972. Plane electromagnetic wave diffraction by circular bar grating. Preprint. Kharkiv, Ukraine: IRE, NAS of Ukraine. no. 15. (in Russian).6. SHESTOPALOV, V. P., LITVINENKO, L. N., MASALOV, S. A. and SOLOGUB, V. G., 1973. Wave diffraction by gratings. Kharkiv, Ukraine: KhGU Publ. (in Russian).7. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, YU. K., 1986. Resonance scattering of waves. Vol. 1. Diffraction gratings. Kyiv, Ukraine: Naukova Dumka Publ. (in Russian).8. VOLKOV, A. A., GORSHUNOV, B. P., IRISOV, A. A., KOZLOV, G. V. and LEBEDEV, S. P., 1982. Electrodynamic properties of plane wire grids. J. Infrared Millim. Terahertz Waves. vol. 3, is. 1, pp. 19–43. DOI: https://doi.org/10.1007/BF010071999. GORSHUNOV, B. P., LEBEDEV, S. P. and MASALOV, S. A., 1984. Metal gratings application as phase plates for use at submm range. Zh. Tekh. Fiz. vol. 54, is. 4, pp. 825–827. (in Russian).10. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser emitting circularly polarized light. Sov. J. Quantum Electron. Vol. 20, is. 10, p. 1213. DOI: https://doi.org/10.1070/QE1990v020n10ABEH00744711. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2004. Measurement of Electrodinamic Parameters of One-Dimensional Wire Gratings in the Sub-Millimeter Wavelength Range. Telecomm. Radio Eng. vol. 63, is. 7-12, pp. 751–758. DOI: https://doi.org/10.1615/TelecomRadEng.v63.i8.9012. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2006. Method for determination of electrodynamic characteristics of one-dimensional wire grating. Ukrainian Patent No. 6285. 17.07.2006.13. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser with an adaptive output mirror. Quantum Electron. vol. 36, is. 9, pp. 849–852. DOI: https://doi.org/10.1070/QE2006v036n09ABEH01327914. BASANOV, B. V. and VETLUZHSKII, A. YU., 2008. Malyuzhinets effect in bulk diffraction gratings. Journal of Radio Electronics [online]. April, vol. 4 (in Russian)[viewed 8 June 2020]. Available from: http://jre.cplire.ru/jre/apr08/3/text.pdf15. SHESTOPALOV, V. P., KIRILENKO, A. A. and MASALOV, S. A., 1975. Reciprocity principle and some physical patterns of wave scattering by diffraction gratings. Bull. Acad. Sci. Ukrain. SSR. no. 3, pp. 8–18. (in Russian).16. MASALOV, S. A., SIRENKO, YU. K. and SHESTOPALOV, V. P., 1980. Malyuzhinets effect manifestation conditions in multi-periodic gratings. Pis’ma Zh. Tekh. Fiz. vol. 6, is. 16, pp. 998–1001. (in Russian).17. DZYUBENKO, M. I., KAMENEV, YU. E. and RADIONOV, V. P., 2017. Gas-discharge lasers of the terahertz range. Radiophys. Electron. vol. 22, no. 3, pp. 58–80. (in Russian). DOI: https://doi.org/10.15407/rej2017.03.05818. VALITOV, R. A. and SRETENSKIY, V. N., 1970. Radio Engineering Measurements. Moscow, Russia: Sovetskoe Radio Publ. (in Russian). Purpose: One-dimensional wire diffraction gratings, usually being mounted on ring frames, are often used in quasi-optical instruments under the construction of functional devices of different usage. Such gratings have been thoroughly studied theoretically and experimentally at the millimeter wavelengths, where they are most widely used and realized in various constructions of instruments and systems. However, a number of design and technological features of such gratings, connected with making the polarizing devices cannot be always taken into account in theoretical models that requires additional experiments. This problem is especially relevant in the terahertz range, where there is a lack of experimental data. This work aims at experimental studying the properties of one-dimensional wire gratings in the terahertz range at different angles of incidence of electromagnetic waves and for different adjustment conditions, as well as practical recommendations concerning the measurement technique and the creation of various polarizing devices.Design/Methodology/Approach: A measuring device has been developed and manufactured, in which a gas-discharge HCN laser (at the wavelength of 337 mm) is used as a radiation source. The study of one-dimensional wire gratings of two types was carried out: grating No. 1 (conductor diameter 70 μm, period 400 mm) and grating No. 2 (conductor diameter 50 μm, period 200 μm). The gratings were installed on a rotary stand. The stepper motor provided rotation within ±90°. Measurements were made automatically with a 0.35° step. The coefficient of laser radiation transmission through the grating was investigated depending on the angle of incidence and the adjustment accuracy.Findings: Analysis of the obtained data shows that the experimental results correlate with the theoretical data. Moreover, the experimental data more fully characterize the properties of the gratings, taking into account their design and technological features, which are very difficult to take into account theoretically. The resonance maxima in the experimental dependences of the transmitted power on the angle of incidence coincide with the calculated data that makes it possible to develop a number of new measuring techniques. Recommendations are given for improving the measurement accuracy and for the practical use of the obtained results.Conclusions: The obtained experimental results allow taking into account some additional features of the diffraction gratings, as well as improving the measurement technique. This is useful for the development of new devices in the terahertz range.Key words: wire grating, terahertz range, laser, transmission coefficientManuscript submitted  02.07.2020Radio phys. radio astron. 2020, 25(3): 240-246REFERENCES1. KATSENELENBAUM, B. Z. and SHEVCHENKO, V. V., 1966. Quasi-Optics: Collection of Article. Moscow, Russia: Mir Publ. (in Russian).2. KISELEV, V. K., KOSTENKO, A. A., KHLOPOV, G. I. (ed) and YANOVSKY, M. S., 2013. Quasi-optical antenna-feeder systems: Monograph. Kharkiv, Ukraine: Kontrast Publ.3. WEINSTEIN, L. A., 1963. To the electrodynamic theory of gratings. Part 1. The ideal grating in free space. In: High Power Electronics. Moscow, Russia: AS USSR Publ. vol. 2, рр. 26–56. (in Russian).4. SHESTOPALOV, V. P., 1971. The Method of the Riemann-Gilbert Problem in the Theory of Wave Diffraction and Propagation. Kharkiv, Ukraine: KhGU Publ. (in Russian).5. MASALOV, S. A., SOLOGUB, V. G. and SHESTOPALOV, V. P., 1972. Plane electromagnetic wave diffraction by circular bar grating. Preprint. Kharkiv, Ukraine: IRE, NAS of Ukraine. no. 15. (in Russian).6. SHESTOPALOV, V. P., LITVINENKO, L. N., MASALOV, S. A. and SOLOGUB, V. G., 1973. Wave diffraction by gratings. Kharkiv, Ukraine: KhGU Publ. (in Russian).7. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, YU. K., 1986. Resonance scattering of waves. Vol. 1. Diffraction gratings. Kyiv, Ukraine: Naukova Dumka Publ. (in Russian).8. VOLKOV, A. A., GORSHUNOV, B. P., IRISOV, A. A., KOZLOV, G. V. and LEBEDEV, S. P., 1982. Electrodynamic properties of plane wire grids. J. Infrared Millim. Terahertz Waves. vol. 3, is. 1, pp. 19–43. DOI: https://doi.org/10.1007/BF010071999. GORSHUNOV, B. P., LEBEDEV, S. P. and MASALOV, S. A., 1984. Metal gratings application as phase plates for use at submm range. Zh. Tekh. Fiz. vol. 54, is. 4, pp. 825–827. (in Russian).10. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser emitting circularly polarized light. Sov. J. Quantum Electron. Vol. 20, is. 10, p. 1213. DOI: https://doi.org/10.1070/QE1990v020n10ABEH00744711. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2004. Measurement of Electrodinamic Parameters of One-Dimensional Wire Gratings in the Sub-Millimeter Wavelength Range. Telecomm. Radio Eng. vol. 63, is. 7-12, pp. 751–758. DOI: https://doi.org/10.1615/TelecomRadEng.v63.i8.9012. KAMENEV, YU. E., MASALOV, S. A. and FILIMONOVA, A. A., 2006. Method for determination of electrodynamic characteristics of one-dimensional wire grating. Ukrainian Patent No. 6285. 17.07.2006.13. KAMENEV, YU. E., KULESHOV, E. M. and FILIMONOVA, A. A., 1990. HCN laser with an adaptive output mirror. Quantum Electron. vol. 36, is. 9, pp. 849–852. DOI: https://doi.org/10.1070/QE2006v036n09ABEH01327914. BASANOV, B. V. and VETLUZHSKII, A. YU., 2008. Malyuzhinets effect in bulk diffraction gratings. Journal of Radio Electronics [online]. April, vol. 4 (in Russian)[viewed 8 June 2020]. Available from: http://jre.cplire.ru/jre/apr08/3/text.pdf15. SHESTOPALOV, V. P., KIRILENKO, A. A. and MASALOV, S. A., 1975. Reciprocity principle and some physical patterns of wave scattering by diffraction gratings. Bull. Acad. Sci. Ukrain. SSR. no. 3, pp. 8–18. (in Russian).16. MASALOV, S. A., SIRENKO, YU. K. and SHESTOPALOV, V. P., 1980. Malyuzhinets effect manifestation conditions in multi-periodic gratings. Pis’ma Zh. Tekh. Fiz. vol. 6, is. 16, pp. 998–1001. (in Russian).17. DZYUBENKO, M. I., KAMENEV, YU. E. and RADIONOV, V. P., 2017. Gas-discharge lasers of the terahertz range. Radiophys. Electron. vol. 22, no. 3, pp. 58–80. (in Russian). DOI: https://doi.org/10.15407/rej2017.03.05818. VALITOV, R. A. and SRETENSKIY, V. N., 1970. Radio Engineering Measurements. Moscow, Russia: Sovetskoe Radio Publ. (in Russian). УДК 535.14, 537.862Предмет і мета роботи: У квазіоптичній техніці при побудові функціональних пристроїв різного призначення широкого поширення набули одновимірні дротяні дифракційні решітки, закріплені на кільцевих рамках. У міліметровому діапазоні такі елементи детально розглянуті теоретично, досліджені експериментально і реалізовані в різноманітних конструкціях приладів і систем. Водночас ціла низка конструктивних і технологічних особливостей, які пов’язані з побудовою поляризаційних пристроїв, не завжди може бути врахована в теоретичних моделях і вимагає додаткових експериментів. Ця проблема є особливо актуальною в терагерцовому діапазоні, де має місце дефіцит експериментальних даних. Метою роботи є експериментальне дослідження властивостей одновимірних дротяних решіток в терагерцовому діапазоні при різних кутах падіння електромагнітної хвилі і точності їх юстування, а також розробка практичних рекомендацій щодо методики вимірювань і побудови поляризаційних пристроїв.Методи і методологія: Розроблено і виготовлено вимірювальну установку, у якій в якості джерела випромінювання використано газорозрядний HCN-лазер (на довжині хвилі 337 мкм). Виконано дослідження дротяних решіток двох типів: решітка № 1 (діаметр провідників 70 мкм, період 400 мкм) та решітка № 2 (діаметр провідників 50 мкм, період 200 мкм). Решітки встановлювалися на поворотному стенді з можливістю їх повороту за допомогою крокового двигуна в діапазоні кутів ± 90° . Виміри виконувалися в автоматичному режимі з кроком 0.35° . Досліджувався коефіцієнт проходження випромінювання лазера крізь решітку в залежності від кута падіння і точності юстування.Результати: Аналіз отриманих даних показує, що експериментальні результати корелюють з теоретичними даними і найповніше характеризують властивості решіток з урахуванням їх конструктивних і технологічних особливостей, які у теоретичних розрахунках врахувати надзвичайно складно. Резонансні максимуми на залежностях потужності випромінювання, що пройшло крізь решітку, від кута його падіння відповідають розрахункам, що дозволяє розробити низку вимірювальних методик. Надано рекомендації щодо підвищення точності вимірювань і практичного використання отриманих результатів.Висновок: Отримані експериментальні результати дозволяють врахувати додаткові характеристики і фізичні особливості дифракційних решіток, а також уточнити методичні аспекти вимірювань і розробки функціональних елементів в терагерцовому діапазоні.Ключові слова: дротяна решітка, терагерцовий діапазон, лазер, коефіцієнт проходженняСтаття надійшла до редакції 02.07.2020Radio phys. radio astron. 2020, 25(3): 240-246СПИСОК ЛІТЕРАТУРИ1. Квазиоптика. Под ред. Б .З. Каценеленбаума, В. В. Шевченко. Москва: Мир, 1966. 504 с.2. Киселев В. К., Костенко А. А., Хлопов Г. И., Яновский М. С. Квазиоптические антенно-фидерные системы: Монография. Под ред. Г. И. Хлопова. Харьков: Контраст, 2013. 408 с.3. Вайнштейн Л. А. К электродинамической теории решеток. 1. Идеальная решетка в свободном пространстве. Электроника больших мощностей. Москва: Изд-во АН СССР, 1963. Вып. 2. С. 26–56.4. Шестопалов В. П. Метод задачи Римана-Гильберта в теории дифракции и распространения электромагнитных волн. Харьков. Изд-во ХГУ, 1971. 400с.5. Масалов С. А., Сологуб В. Г., Шестопалов В. П. Дифракция плоской электромагнитной волны на решетке из брусьев круглого сечения. Препринт ИРЭ АН УССР. Харьков, 1972. № 15. 38 с.6. Шестопалов В. П., Литвиненко Л. Н., Масалов С. А., Сологуб В. Г. Дифракция волн на решетках. Харьков: Изд-во ХГУ, 1973. 288с.7. Шестопалов В. П., Кириленко А. А., Масалов С. А., Сиренко Ю. К. Резонансное рассеяние волн. Т. 1. Дифракционные решетки. Киев: Наукова думка, 1986. 227 с.8. Volkov A. A., Gorshunov B. P., Irisov A. A., Kozlov G. V., and Lebedev S. P. Electrodynamic properties of plane wire grids. J. Infrared Millim. Terahertz Waves. 1982. Vol. 3, Is. 1. P. 19–43. DOI: 10.1007/BF010071999. Горшунов Б. П., Лебедев С. П., Масалов С. А. Использование металлических решеток в качестве фазовых пластинок субмм диапазона. Журнал технической физики. 1984. Т. 54, № 4. С. 825–827.10. Каменев Ю .Е., Кулешов Е. М, Филимонова А. А. HCN-лазер с круговой поляризацией излучения. Квантовая электроника. 1990. Т. 17, № 10. С. 1305.11. Каменев Ю. Е., Масалов С. А., Филимонова А. А. Измерение электродинамических параметров одномерных проволочных решеток в субмиллиметровом диапазоне Радиофизика и электроника. 2004. Т. 9, № 3. С. 615–618.12. Патент України № 6285. Каменев Ю. Е., Масалов С. А., Филимонова А. А. Спосіб визначення електродинамічних характеристик одновимірних дротяних решіток. 17.07.2006.13. Каменев Ю. Е., Масалов С. А., Филимонова А. А. HCN-лазер с адаптивным выходным зеркалом. Квантовая электроника. 2006. Т. 36, № 9. С. 849–852.14. Басанов Б. В., Ветлужский А. Ю. Эффект Малюжинца в объемных дифракционных решетках. Журнал радиоэлектроники. 2008. № 4. URL: http://jre.cplire.ru/jre/apr08/3/text.pdf (дата обращения: 8.06.2020).15. Шестопалов В. П., Кириленко А. А., Масалов С. А. Принцип взаимности и некоторые физические закономерности рассеяния волн на дифракционных решетках. Вестник АН УССР. 1975. № 3. С. 8–18.16. Масалов С. А., Сиренко Ю. К., Шестопалов В. П. Условия проявления эффекта Малюжинца в часто-периодических решетках. Письма в ЖТФ. 1980. Т. 6, Вып. 16. С. 998–1001.17. Дзюбенко М. И., Каменев Ю. Е., Радионов В. П. Газоразрядные лазеры терагерцевого диапазона. Радиофизика и электроника. 2017. Т. 22, № 3. С. 58–80.18. Валитов Р. А., Сретенский В. Н. Радиотехнические измерения. Москва: Сов. Радио, 1970. 705 с. Видавничий дім «Академперіодика» 2020-09-10 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1340 10.15407/rpra25.03.240 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 3 (2020); 240 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 3 (2020); 240 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 3 (2020); 240 2415-7007 1027-9636 10.15407/rpra25.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1340/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY