DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION
Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To d...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Видавничий дім «Академперіодика»
2020
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1345 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1345 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2020-12-11T10:25:04Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
pulse dispersion measure rotation measure plasma polarization pulsar radio telescope |
| spellingShingle |
pulse dispersion measure rotation measure plasma polarization pulsar radio telescope Ulyanov, O. M. Shevtsova, A. I. Yerin, S. M. DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| topic_facet |
pulse dispersion measure rotation measure plasma polarization pulsar radio telescope pulse dispersion measure rotation measure plasma polarization pulsar radio telescope імпульс міра дисперсії міра обертання плазма поляризація пульсар радіотелескоп |
| format |
Article |
| author |
Ulyanov, O. M. Shevtsova, A. I. Yerin, S. M. |
| author_facet |
Ulyanov, O. M. Shevtsova, A. I. Yerin, S. M. |
| author_sort |
Ulyanov, O. M. |
| title |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| title_short |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| title_full |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| title_fullStr |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| title_full_unstemmed |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION |
| title_sort |
determination of the rotation measure value sign when receiving a single linear polarization of the pulsar radio emission |
| title_alt |
DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION ВИЗНАЧЕННЯ ЗНАКУ МІРИ ОБЕРТАННЯ ПРИ РЕЄСТРАЦІЇ ОДНІЄЇ ЛІНІЙНОЇ ПОЛЯРИЗАЦІЇ РАДІОВИПРОМІНЮВАННЯ ПУЛЬСАРІВ |
| description |
Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To determine the parameters of the both plasma types it is reasonable to use polarization characteristics of a pulsed radio emission of pulsars. An accurate determination of these characteristics is quite a complex problem. For its solving, primarily we have to determine two parameters of the propagation medium – its dispersion and rotation measures. Their absolute values can be determined with the relative precision of 10-4, but the problem of rotation measure value sign determination arises. This sign depends on the interstellar magnetic field direction along the line of sight. Hear, a new method of rotation measure value sign determination is proposed.Design/methodology/approach: Muller polarization matrices are usually used for determination of such a propagation parameter as the rotation measure absolute value. When only one linear polarization is received, using of these matrices allows quite accurate determining the absolute value of the rotation measure, but not the sign of this parameter due to a certain symmetry of these matrices with respect to the direction of the linear polarization rotation plane. If we complement the system of equations, which determines the rotation measure value, with some new additional components, which take into account the contributions of the Earth ionosphere and magnetosphere to the rotation measure value, one can notice that this contribution is always positive in the Southern magnetic hemisphere (the majority of the Northern geographical hemisphere) and is always negative in the Northern magnetic hemisphere (the majority of the Southern geographical hemisphere). Moreover, the absolute value of this contribution is maximal at noon and minimal at midnight, when the concentration of ions in the Earth ionosphere is maximal and minimal, respectively. Accounting for these regularities allows to determine not only the absolute value of the rotation measure, but also its sign by means of two independent time-shifted estimations of the observed absolute value of this parameter for various ionization degrees of the Earth ionosphere.Findings: We show that using of additional equations, which take into account the contribution of the Earth ionosphere and magnetosphere to the value of the rotation measure parameter, allows full determination of this parameter accounting for the sign of this value even for the antennas, which can record a single linear polarization only. This approach allows to determine all polarization parameters of the pulsar radio emission as well as of the pulsed or continuum polarized radio emission of other cosmic sources.Conclusions: The paper presents the results of measurement of the rotation measure for the two closest to the Earth pulsars, namely J0814+7429 (B0809+74), J0953+0755 (B0950+08), and the comparison of the proposed technique for this parameter determination with other existing techniques.Key words: pulse, dispersion measure, rotation measure, plasma, polarization, pulsar, radio telescopeManuscript submitted 12.11.2020 Radio phys. radio astron. 2020, 25(4): 253-267REFERENCES1. HEWISH, A., BELL, S. J., PILKINGTON, J. D. H., SCOTT, P. F. and COLLINS, R. A., 1968. Observation of a Rapidly Pulsating Radio Source. Nature. vol. 217, no. 5130, pp. 709–713. DOI: 10.1038/217709a02. RADHAKRISHNAN, V. and COOKE, D. J., 1969. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. vol. 3, pp. 225–229.3. KOMESAROFF, M. M., MORRIS, D. and COOKE, D. J., 1970. Linear Polarization and Pulse Shape Measurements on Nine Pulsars. Astrophys. Lett. vol. 5, pp. 37–41.4. BACKER, D. C., RANKIN, J. M. and CAMPBELL, D. B., 1976. Orthogonal mode emission in geometric models of pulsar polarisation. Nature. vol. 263, no. 5574, pp. 202–207. DOI: 10.1038/263202a05. EDWARDS, R. T., 2004. The polarization of drifting subpulses. Astron. Astrophys. vol 426, is. 2, pp. 677–686. DOI: 10.1051/0004-6361:200410296. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Balt. Astron. vol. 22, pp. 53–65. DOI: 10.1515/astro-2017-01477. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2013. Polarization Sounding of Pulsar Magnetosphere. Bulletin of the Crimean Astrophysical Observatory. vol. 109, no. 4, pp 159–168. (in Russian).8. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Algorithms of Polarization Parameters Determination of Pulsar Radio Emission. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 101–110. (in Russian). DOI: 10.15407/rpra19.02.1019. NOUTSOS, A., SOBEY, C., KONDRATIEV, V. I., WELTEVREDE, P., VERBIEST, J. P. W., KARASTERGIOU, A., KRAMER,M., KUNIYOSHI, M., ALEXOV, A., BRETON, R. P., BILOUS, A. V., COOPER, S., FALCKE, H., GRIEßMEIER, J.-M., HASSALL, T. E., HESSELS, J. W. T., KEANE, E. F., OSŁOWSKI, S., PILIA, M., SERYLAK, M., STAPPERS, B. W., TER VEEN, S., VAN LEEUWEN, J., ZAGKOURIS, K., ANDERSON, K., BÄHREN, L., BELL, M., BRODERICK, J., CARBONE, D., CENDES, Y., COENEN, T., CORBEL, S., EISLÖFFEL, J., FENDER, R., GARSDEN, H., JONKER, P., LAW, C., MARKOFF, S., MASTERS, J., MILLER-JONES, J., MOLENAAR, G., OSTEN, R., PIETKA, M., ROL, E., ROWLINSON, A., SCHEERS, B., SPREEUW, H., STALEY, T., STEWART, A., SWINBANK, J., WIJERS, R., WIJNANDS, R., WISE, M., ZARKA, P. and VAN DER HORST, A., 2015. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. vol 576, id. A62. DOI: 10.1051/0004-6361/20142518610. ULYANOV, O. M., SHEVTSOVA, A. I., ZAKHARENKO, V. V., SKORYK, A. O., VASYLIEVA, I. Y. and PLAKHOV, M. S., 2018. Time and Polarization Radiation Characteristics of PSR J0242+6256 at the Decameter Wavelength Range. Kinemat. Phys. Celest. Bodies. vol. 34, no. 4, pp. 174–183. DOI: 10.3103/S0884591318040062.11. DIKE, V., TAYLOR, G. B., DOWELL, J. and STOVALL, K., 2020. Detecting pulsar polarization below 100 MHz with the Long Wavelength Array. Mon. Not. R. Astron. Soc. vol. 496, is. 3, pp. 3623–3634. DOI: 10.1093/mnras/staa178812. MELROSE, D. B. and STONEHAM, R. J., 1977. The natural wave modes in a pulsar magnetosphere. Proc. Astron. Soc. Aust. vol. 3, is. 2, pp. 120–122. DOI: 10.1017/S132335800001501013. PETROVA, S. A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. Astron. Astrophys. vol. 378, is. 3, pp. 883–897. DOI: 10.1051/0004-6361:2001129714. SCHNITZELER, D. H. F. M., EATOUGH, R. P., FERRIÈRE, K., KRAMER, M., LEE, K. J., NOUTSOS, A. and SHANNON, R. M., 2016. Radio polarimetry of Galactic Centre pulsars. Mon. Not. R. Astron. Soc. vol. 459, is. 3, pp. 3005–3011. DOI: 10.1093/mnras/stw84115. MITRA, D., BASU, R., MACIESIAK, K., SKRZYPCZAK, A., MELIKIDZE, G. I., SZARY, A. and KRZESZOWSKI, K., 2016. Meterwavelength Single-Pulse Polarimetric Emission Survey. Astrophys. J. vol. 833, is. 1, id. 28. DOI: 10.3847/1538-4357/833/1/2816. GINZBURG, V. L., 1987. Theoretical physics and astrophysics. Moscow, Russia: Nauka Publ. (in Russian).17. ZHELEZNYAKOV, V. V., 1997. Radiation in astrophysical plasma. Moscow, Russia: Janus-K Publ. (in Russian).18. PETROVA, S. A., 2006. Polarization transfer in a pulsar magnetosphere. Mon. Not. R. Astron. Soc. vol. 366, is. 4, pp. 1539–1550. DOI: 10.1111/j.1365-2966.2005.09941.x19. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, is. 1, pp. 150–157. DOI: 10.1093/mnras/stv217220. NOVIKOV, A. YU., POPOV, M. V., SOGLASNOV, V. A., BRUK, YU. M. and USTIMENKO, B. YU., 1984. Observations of pulsar PSR 0809+74 at a frequency of 25 MHz with a time resolution of 100 μsec. Sov. Astron. vol. 28, no. 2, pp. 199–201.21. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133. (in Russian).22. POPOV, M. V., KUZ’MIN, A. D., ULYANOV, O. M., DESHPANDE, A. A., ERSHOV, A. A., ZAKHARENKO, V. V., KONDRAT’EV, V. I., KOSTYUK, S. V., LOSOVSKIĬ, B. YA. and SOGLASNOV, V. A., 2006. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths. Astron. Rep. vol. 50, is. 7, pp. 562–568. DOI: 10.1134/S106377290607006723. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two-Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–19. (in Russian).24. UL’YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, YU. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, is. 11, pp. 917–924. DOI: 10.1134/S106377290811006125. HANKINS, T. H. and RICKETT, B. J., 1975. Pulsar signal processing. In: B. ALDER, S. FERNBACH and M. ROTENBERG, eds. Methods in Computational Physics: Advances in Research and Applications. Volume 14 – Radio Astronomy. New York, London: Academic Press Ink., pp. 55–129. DOI: 10.1016/B978-0-12-460814-6.50002-426. SKORYK, A. O., ULYANOV, O. M., ZAKHARENKO, V. V., SHEVTSOVA, A. I., VASYLIEVA, I. Y., PLAKHOV, M. S. and KRAVTSOV, I. M., 2017. Fine structure of anomalously intense pulses of PSR J0814+7429 radio emission in the decameter range. Radio Phys. Radio Astron. vol. 22, no. 2, pp. 93–111. DOI: https://doi.org/10.15407/rpra22.02.09327. COLE, T. W. and PILKINGTON, J. D. H., 1968. Search for Pulsating Radio Sources in the Declination Range +44°<δ<+90°. Nature. vol. 219, no. 5154, pp. 574–576. DOI:10.1038/219574a028. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 24 October 2020]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/29. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, is. 4, pp. 1993–2006. DOI: 10.1086/42848830. UL’YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6, pp. 417–429. DOI: 10.1134/S106377291206005431. MANCHESTER, R. N., 1972. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. vol. 172, pp. 43–52. DOI: 10.1086/15132632. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Polarization Sounding of Pulsar Magnetosphere (Part I). ArXiv E-Prints. [online]. [viewed 24 October 2020].Available from: arXiv:1411.6453 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2020 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1345 |
| work_keys_str_mv |
AT ulyanovom determinationoftherotationmeasurevaluesignwhenreceivingasinglelinearpolarizationofthepulsarradioemission AT shevtsovaai determinationoftherotationmeasurevaluesignwhenreceivingasinglelinearpolarizationofthepulsarradioemission AT yerinsm determinationoftherotationmeasurevaluesignwhenreceivingasinglelinearpolarizationofthepulsarradioemission AT ulyanovom viznačennâznakumíriobertannâprireêstracííodníêílíníjnoípolârizacííradíovipromínûvannâpulʹsarív AT shevtsovaai viznačennâznakumíriobertannâprireêstracííodníêílíníjnoípolârizacííradíovipromínûvannâpulʹsarív AT yerinsm viznačennâznakumíriobertannâprireêstracííodníêílíníjnoípolârizacííradíovipromínûvannâpulʹsarív |
| first_indexed |
2025-12-02T15:32:34Z |
| last_indexed |
2025-12-02T15:32:34Z |
| _version_ |
1850423636958117888 |
| spelling |
rpra-journalorgua-article-13452020-12-11T10:25:04Z DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION ВИЗНАЧЕННЯ ЗНАКУ МІРИ ОБЕРТАННЯ ПРИ РЕЄСТРАЦІЇ ОДНІЄЇ ЛІНІЙНОЇ ПОЛЯРИЗАЦІЇ РАДІОВИПРОМІНЮВАННЯ ПУЛЬСАРІВ Ulyanov, O. M. Shevtsova, A. I. Yerin, S. M. pulse; dispersion measure; rotation measure; plasma; polarization; pulsar; radio telescope pulse; dispersion measure; rotation measure; plasma; polarization; pulsar; radio telescope імпульс; міра дисперсії; міра обертання; плазма; поляризація; пульсар; радіотелескоп Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To determine the parameters of the both plasma types it is reasonable to use polarization characteristics of a pulsed radio emission of pulsars. An accurate determination of these characteristics is quite a complex problem. For its solving, primarily we have to determine two parameters of the propagation medium – its dispersion and rotation measures. Their absolute values can be determined with the relative precision of 10-4, but the problem of rotation measure value sign determination arises. This sign depends on the interstellar magnetic field direction along the line of sight. Hear, a new method of rotation measure value sign determination is proposed.Design/methodology/approach: Muller polarization matrices are usually used for determination of such a propagation parameter as the rotation measure absolute value. When only one linear polarization is received, using of these matrices allows quite accurate determining the absolute value of the rotation measure, but not the sign of this parameter due to a certain symmetry of these matrices with respect to the direction of the linear polarization rotation plane. If we complement the system of equations, which determines the rotation measure value, with some new additional components, which take into account the contributions of the Earth ionosphere and magnetosphere to the rotation measure value, one can notice that this contribution is always positive in the Southern magnetic hemisphere (the majority of the Northern geographical hemisphere) and is always negative in the Northern magnetic hemisphere (the majority of the Southern geographical hemisphere). Moreover, the absolute value of this contribution is maximal at noon and minimal at midnight, when the concentration of ions in the Earth ionosphere is maximal and minimal, respectively. Accounting for these regularities allows to determine not only the absolute value of the rotation measure, but also its sign by means of two independent time-shifted estimations of the observed absolute value of this parameter for various ionization degrees of the Earth ionosphere.Findings: We show that using of additional equations, which take into account the contribution of the Earth ionosphere and magnetosphere to the value of the rotation measure parameter, allows full determination of this parameter accounting for the sign of this value even for the antennas, which can record a single linear polarization only. This approach allows to determine all polarization parameters of the pulsar radio emission as well as of the pulsed or continuum polarized radio emission of other cosmic sources.Conclusions: The paper presents the results of measurement of the rotation measure for the two closest to the Earth pulsars, namely J0814+7429 (B0809+74), J0953+0755 (B0950+08), and the comparison of the proposed technique for this parameter determination with other existing techniques.Key words: pulse, dispersion measure, rotation measure, plasma, polarization, pulsar, radio telescopeManuscript submitted 12.11.2020 Radio phys. radio astron. 2020, 25(4): 253-267REFERENCES1. HEWISH, A., BELL, S. J., PILKINGTON, J. D. H., SCOTT, P. F. and COLLINS, R. A., 1968. Observation of a Rapidly Pulsating Radio Source. Nature. vol. 217, no. 5130, pp. 709–713. DOI: 10.1038/217709a02. RADHAKRISHNAN, V. and COOKE, D. J., 1969. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. vol. 3, pp. 225–229.3. KOMESAROFF, M. M., MORRIS, D. and COOKE, D. J., 1970. Linear Polarization and Pulse Shape Measurements on Nine Pulsars. Astrophys. Lett. vol. 5, pp. 37–41.4. BACKER, D. C., RANKIN, J. M. and CAMPBELL, D. B., 1976. Orthogonal mode emission in geometric models of pulsar polarisation. Nature. vol. 263, no. 5574, pp. 202–207. DOI: 10.1038/263202a05. EDWARDS, R. T., 2004. The polarization of drifting subpulses. Astron. Astrophys. vol 426, is. 2, pp. 677–686. DOI: 10.1051/0004-6361:200410296. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Balt. Astron. vol. 22, pp. 53–65. DOI: 10.1515/astro-2017-01477. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2013. Polarization Sounding of Pulsar Magnetosphere. Bulletin of the Crimean Astrophysical Observatory. vol. 109, no. 4, pp 159–168. (in Russian).8. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Algorithms of Polarization Parameters Determination of Pulsar Radio Emission. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 101–110. (in Russian). DOI: 10.15407/rpra19.02.1019. NOUTSOS, A., SOBEY, C., KONDRATIEV, V. I., WELTEVREDE, P., VERBIEST, J. P. W., KARASTERGIOU, A., KRAMER,M., KUNIYOSHI, M., ALEXOV, A., BRETON, R. P., BILOUS, A. V., COOPER, S., FALCKE, H., GRIEßMEIER, J.-M., HASSALL, T. E., HESSELS, J. W. T., KEANE, E. F., OSŁOWSKI, S., PILIA, M., SERYLAK, M., STAPPERS, B. W., TER VEEN, S., VAN LEEUWEN, J., ZAGKOURIS, K., ANDERSON, K., BÄHREN, L., BELL, M., BRODERICK, J., CARBONE, D., CENDES, Y., COENEN, T., CORBEL, S., EISLÖFFEL, J., FENDER, R., GARSDEN, H., JONKER, P., LAW, C., MARKOFF, S., MASTERS, J., MILLER-JONES, J., MOLENAAR, G., OSTEN, R., PIETKA, M., ROL, E., ROWLINSON, A., SCHEERS, B., SPREEUW, H., STALEY, T., STEWART, A., SWINBANK, J., WIJERS, R., WIJNANDS, R., WISE, M., ZARKA, P. and VAN DER HORST, A., 2015. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. vol 576, id. A62. DOI: 10.1051/0004-6361/20142518610. ULYANOV, O. M., SHEVTSOVA, A. I., ZAKHARENKO, V. V., SKORYK, A. O., VASYLIEVA, I. Y. and PLAKHOV, M. S., 2018. Time and Polarization Radiation Characteristics of PSR J0242+6256 at the Decameter Wavelength Range. Kinemat. Phys. Celest. Bodies. vol. 34, no. 4, pp. 174–183. DOI: 10.3103/S0884591318040062.11. DIKE, V., TAYLOR, G. B., DOWELL, J. and STOVALL, K., 2020. Detecting pulsar polarization below 100 MHz with the Long Wavelength Array. Mon. Not. R. Astron. Soc. vol. 496, is. 3, pp. 3623–3634. DOI: 10.1093/mnras/staa178812. MELROSE, D. B. and STONEHAM, R. J., 1977. The natural wave modes in a pulsar magnetosphere. Proc. Astron. Soc. Aust. vol. 3, is. 2, pp. 120–122. DOI: 10.1017/S132335800001501013. PETROVA, S. A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. Astron. Astrophys. vol. 378, is. 3, pp. 883–897. DOI: 10.1051/0004-6361:2001129714. SCHNITZELER, D. H. F. M., EATOUGH, R. P., FERRIÈRE, K., KRAMER, M., LEE, K. J., NOUTSOS, A. and SHANNON, R. M., 2016. Radio polarimetry of Galactic Centre pulsars. Mon. Not. R. Astron. Soc. vol. 459, is. 3, pp. 3005–3011. DOI: 10.1093/mnras/stw84115. MITRA, D., BASU, R., MACIESIAK, K., SKRZYPCZAK, A., MELIKIDZE, G. I., SZARY, A. and KRZESZOWSKI, K., 2016. Meterwavelength Single-Pulse Polarimetric Emission Survey. Astrophys. J. vol. 833, is. 1, id. 28. DOI: 10.3847/1538-4357/833/1/2816. GINZBURG, V. L., 1987. Theoretical physics and astrophysics. Moscow, Russia: Nauka Publ. (in Russian).17. ZHELEZNYAKOV, V. V., 1997. Radiation in astrophysical plasma. Moscow, Russia: Janus-K Publ. (in Russian).18. PETROVA, S. A., 2006. Polarization transfer in a pulsar magnetosphere. Mon. Not. R. Astron. Soc. vol. 366, is. 4, pp. 1539–1550. DOI: 10.1111/j.1365-2966.2005.09941.x19. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, is. 1, pp. 150–157. DOI: 10.1093/mnras/stv217220. NOVIKOV, A. YU., POPOV, M. V., SOGLASNOV, V. A., BRUK, YU. M. and USTIMENKO, B. YU., 1984. Observations of pulsar PSR 0809+74 at a frequency of 25 MHz with a time resolution of 100 μsec. Sov. Astron. vol. 28, no. 2, pp. 199–201.21. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133. (in Russian).22. POPOV, M. V., KUZ’MIN, A. D., ULYANOV, O. M., DESHPANDE, A. A., ERSHOV, A. A., ZAKHARENKO, V. V., KONDRAT’EV, V. I., KOSTYUK, S. V., LOSOVSKIĬ, B. YA. and SOGLASNOV, V. A., 2006. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths. Astron. Rep. vol. 50, is. 7, pp. 562–568. DOI: 10.1134/S106377290607006723. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two-Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–19. (in Russian).24. UL’YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, YU. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, is. 11, pp. 917–924. DOI: 10.1134/S106377290811006125. HANKINS, T. H. and RICKETT, B. J., 1975. Pulsar signal processing. In: B. ALDER, S. FERNBACH and M. ROTENBERG, eds. Methods in Computational Physics: Advances in Research and Applications. Volume 14 – Radio Astronomy. New York, London: Academic Press Ink., pp. 55–129. DOI: 10.1016/B978-0-12-460814-6.50002-426. SKORYK, A. O., ULYANOV, O. M., ZAKHARENKO, V. V., SHEVTSOVA, A. I., VASYLIEVA, I. Y., PLAKHOV, M. S. and KRAVTSOV, I. M., 2017. Fine structure of anomalously intense pulses of PSR J0814+7429 radio emission in the decameter range. Radio Phys. Radio Astron. vol. 22, no. 2, pp. 93–111. DOI: https://doi.org/10.15407/rpra22.02.09327. COLE, T. W. and PILKINGTON, J. D. H., 1968. Search for Pulsating Radio Sources in the Declination Range +44°<δ<+90°. Nature. vol. 219, no. 5154, pp. 574–576. DOI:10.1038/219574a028. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 24 October 2020]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/29. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, is. 4, pp. 1993–2006. DOI: 10.1086/42848830. UL’YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6, pp. 417–429. DOI: 10.1134/S106377291206005431. MANCHESTER, R. N., 1972. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. vol. 172, pp. 43–52. DOI: 10.1086/15132632. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Polarization Sounding of Pulsar Magnetosphere (Part I). ArXiv E-Prints. [online]. [viewed 24 October 2020].Available from: arXiv:1411.6453 Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To determine the parameters of the both plasma types it is reasonable to use polarization characteristics of a pulsed radio emission of pulsars. An accurate determination of these characteristics is quite a complex problem. For its solving, primarily we have to determine two parameters of the propagation medium – its dispersion and rotation measures. Their absolute values can be determined with the relative precision of 10-4, but the problem of rotation measure value sign determination arises. This sign depends on the interstellar magnetic field direction along the line of sight. Hear, a new method of rotation measure value sign determination is proposed.Design/methodology/approach: Muller polarization matrices are usually used for determination of such a propagation parameter as the rotation measure absolute value. When only one linear polarization is received, using of these matrices allows quite accurate determining the absolute value of the rotation measure, but not the sign of this parameter due to a certain symmetry of these matrices with respect to the direction of the linear polarization rotation plane. If we complement the system of equations, which determines the rotation measure value, with some new additional components, which take into account the contributions of the Earth ionosphere and magnetosphere to the rotation measure value, one can notice that this contribution is always positive in the Southern magnetic hemisphere (the majority of the Northern geographical hemisphere) and is always negative in the Northern magnetic hemisphere (the majority of the Southern geographical hemisphere). Moreover, the absolute value of this contribution is maximal at noon and minimal at midnight, when the concentration of ions in the Earth ionosphere is maximal and minimal, respectively. Accounting for these regularities allows to determine not only the absolute value of the rotation measure, but also its sign by means of two independent time-shifted estimations of the observed absolute value of this parameter for various ionization degrees of the Earth ionosphere.Findings: We show that using of additional equations, which take into account the contribution of the Earth ionosphere and magnetosphere to the value of the rotation measure parameter, allows full determination of this parameter accounting for the sign of this value even for the antennas, which can record a single linear polarization only. This approach allows to determine all polarization parameters of the pulsar radio emission as well as of the pulsed or continuum polarized radio emission of other cosmic sources.Conclusions: The paper presents the results of measurement of the rotation measure for the two closest to the Earth pulsars, namely J0814+7429 (B0809+74), J0953+0755 (B0950+08), and the comparison of the proposed technique for this parameter determination with other existing techniques.Key words: pulse, dispersion measure, rotation measure, plasma, polarization, pulsar, radio telescopeManuscript submitted 12.11.2020 Radio phys. radio astron. 2020, 25(4): 253-267REFERENCES1. HEWISH, A., BELL, S. J., PILKINGTON, J. D. H., SCOTT, P. F. and COLLINS, R. A., 1968. Observation of a Rapidly Pulsating Radio Source. Nature. vol. 217, no. 5130, pp. 709–713. DOI: https://doi.org/10.1038/217709a02. RADHAKRISHNAN, V. and COOKE, D. J., 1969. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. vol. 3, pp. 225–229.3. KOMESAROFF, M. M., MORRIS, D. and COOKE, D. J., 1970. Linear Polarization and Pulse Shape Measurements on Nine Pulsars. Astrophys. Lett. vol. 5, pp. 37–41.4. BACKER, D. C., RANKIN, J. M. and CAMPBELL, D. B., 1976. Orthogonal mode emission in geometric models of pulsar polarisation. Nature. vol. 263, no. 5574, pp. 202–207. DOI: https://doi.org/10.1038/263202a05. EDWARDS, R. T., 2004. The polarization of drifting subpulses. Astron. Astrophys. vol 426, is. 2, pp. 677–686. DOI: https://doi.org/10.1051/0004-6361:200410296. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Balt. Astron. vol. 22, pp. 53–65. DOI: https://doi.org/10.1515/astro-2017-01477. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2013. Polarization Sounding of Pulsar Magnetosphere. Bulletin of the Crimean Astrophysical Observatory. vol. 109, no. 4, pp 159–168. (in Russian).8. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Algorithms of Polarization Parameters Determination of Pulsar Radio Emission. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 101–110. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.1019. NOUTSOS, A., SOBEY, C., KONDRATIEV, V. I., WELTEVREDE, P., VERBIEST, J. P. W., KARASTERGIOU, A., KRAMER,M., KUNIYOSHI, M., ALEXOV, A., BRETON, R. P., BILOUS, A. V., COOPER, S., FALCKE, H., GRIEßMEIER, J.-M., HASSALL, T. E., HESSELS, J. W. T., KEANE, E. F., OSŁOWSKI, S., PILIA, M., SERYLAK, M., STAPPERS, B. W., TER VEEN, S., VAN LEEUWEN, J., ZAGKOURIS, K., ANDERSON, K., BÄHREN, L., BELL, M., BRODERICK, J., CARBONE, D., CENDES, Y., COENEN, T., CORBEL, S., EISLÖFFEL, J., FENDER, R., GARSDEN, H., JONKER, P., LAW, C., MARKOFF, S., MASTERS, J., MILLER-JONES, J., MOLENAAR, G., OSTEN, R., PIETKA, M., ROL, E., ROWLINSON, A., SCHEERS, B., SPREEUW, H., STALEY, T., STEWART, A., SWINBANK, J., WIJERS, R., WIJNANDS, R., WISE, M., ZARKA, P. and VAN DER HORST, A., 2015. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. vol 576, id. A62. DOI: https://doi.org/10.1051/0004-6361/20142518610. ULYANOV, O. M., SHEVTSOVA, A. I., ZAKHARENKO, V. V., SKORYK, A. O., VASYLIEVA, I. Y. and PLAKHOV, M. S., 2018. Time and Polarization Radiation Characteristics of PSR J0242+6256 at the Decameter Wavelength Range. Kinemat. Phys. Celest. Bodies. vol. 34, no. 4, pp. 174–183. DOI: https://doi.org/10.3103/S088459131804006211. DIKE, V., TAYLOR, G. B., DOWELL, J. and STOVALL, K., 2020. Detecting pulsar polarization below 100 MHz with the Long Wavelength Array. Mon. Not. R. Astron. Soc. vol. 496, is. 3, pp. 3623–3634. DOI: https://doi.org/10.1093/mnras/staa178812. MELROSE, D. B. and STONEHAM, R. J., 1977. The natural wave modes in a pulsar magnetosphere. Proc. Astron. Soc. Aust. vol. 3, is. 2, pp. 120–122. DOI: https://doi.org/10.1017/S132335800001501013. PETROVA, S. A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. Astron. Astrophys. vol. 378, is. 3, pp. 883–897. DOI: https://doi.org/10.1051/0004-6361:2001129714. SCHNITZELER, D. H. F. M., EATOUGH, R. P., FERRIÈRE, K., KRAMER, M., LEE, K. J., NOUTSOS, A. and SHANNON, R. M., 2016. Radio polarimetry of Galactic Centre pulsars. Mon. Not. R. Astron. Soc. vol. 459, is. 3, pp. 3005–3011. DOI: https://doi.org/10.1093/mnras/stw84115. MITRA, D., BASU, R., MACIESIAK, K., SKRZYPCZAK, A., MELIKIDZE, G. I., SZARY, A. and KRZESZOWSKI, K., 2016. Meterwavelength Single-Pulse Polarimetric Emission Survey. Astrophys. J. vol. 833, is. 1, id. 28. DOI: https://doi.org/10.3847/1538-4357/833/1/2816. GINZBURG, V. L., 1987. Theoretical physics and astrophysics. Moscow, Russia: Nauka Publ. (in Russian).17. ZHELEZNYAKOV, V. V., 1997. Radiation in astrophysical plasma. Moscow, Russia: Janus-K Publ. (in Russian).18. PETROVA, S. A., 2006. Polarization transfer in a pulsar magnetosphere. Mon. Not. R. Astron. Soc. vol. 366, is. 4, pp. 1539–1550. DOI: https://doi.org/10.1111/j.1365-2966.2005.09941.x19. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, is. 1, pp. 150–157. DOI: https://doi.org/10.1093/mnras/stv217220. NOVIKOV, A. YU., POPOV, M. V., SOGLASNOV, V. A., BRUK, YU. M. and USTIMENKO, B. YU., 1984. Observations of pulsar PSR 0809+74 at a frequency of 25 MHz with a time resolution of 100 μsec. Sov. Astron. vol. 28, no. 2, pp. 199–201.21. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133. (in Russian).22. POPOV, M. V., KUZ’MIN, A. D., ULYANOV, O. M., DESHPANDE, A. A., ERSHOV, A. A., ZAKHARENKO, V. V., KONDRAT’EV, V. I., KOSTYUK, S. V., LOSOVSKIĬ, B. YA. and SOGLASNOV, V. A., 2006. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths. Astron. Rep. vol. 50, is. 7, pp. 562–568. DOI: https://doi.org/10.1134/S106377290607006723. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two-Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–19. (in Russian).24. UL’YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, YU. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, is. 11, pp. 917–924. DOI: https://doi.org/10.1134/S106377290811006125. HANKINS, T. H. and RICKETT, B. J., 1975. Pulsar signal processing. In: B. ALDER, S. FERNBACH and M. ROTENBERG, eds. Methods in Computational Physics: Advances in Research and Applications. Volume 14 – Radio Astronomy. New York, London: Academic Press Ink., pp. 55–129. DOI: https://doi.org/10.1016/B978-0-12-460814-6.50002-426. SKORYK, A. O., ULYANOV, O. M., ZAKHARENKO, V. V., SHEVTSOVA, A. I., VASYLIEVA, I. Y., PLAKHOV, M. S. and KRAVTSOV, I. M., 2017. Fine structure of anomalously intense pulses of PSR J0814+7429 radio emission in the decameter range. Radio Phys. Radio Astron. vol. 22, no. 2, pp. 93–111. DOI: https://doi.org/10.15407/rpra22.02.09327. COLE, T. W. and PILKINGTON, J. D. H., 1968. Search for Pulsating Radio Sources in the Declination Range +44°<δ<+90°. Nature. vol. 219, no. 5154, pp. 574–576. DOI:https://doi.org/10.1038/219574a028. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 24 October 2020]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/29. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, is. 4, pp. 1993–2006. DOI: https://doi.org/10.1086/42848830. UL’YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6, pp. 417–429. DOI: https://doi.org/10.1134/S106377291206005431. MANCHESTER, R. N., 1972. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. vol. 172, pp. 43–52. DOI: https://doi.org/10.1086/15132632. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Polarization Sounding of Pulsar Magnetosphere (Part I). ArXiv E-Prints. [online]. [viewed 24 October 2020].Available from: arXiv:1411.6453 Предмет та мета роботи: Дослідження пульсарів дозволяють поглиблювати наші знання стосовно як екзотичної електрон-позитронної плазми, що знаходиться в магнітосфері пульсара, де наявні сильні магнітні поля, так і звичайної іонно-електронної плазми міжзоряного простору, яка існує в слабкому магнітному полі. Для визначення параметрів обох типів плазми доцільно використовувати поляризаційні характеристики імпульсного радіовипромінювання пульсарів. Точне визначення цих характеристик є досить складною задачею. Для її вирішення потрібно спершу знайти міру дисперсії та міру обертання середовища поширення. Обидві величини за абсолютним значенням встановлюються з відносною точністю 10-4, однак існує проблема невизначеності знаку міри обертання, який залежить від напрямку міжзоряного магнітного поля вздовж променя зору. Мета роботи ‒ запропонувати новий метод визначення знаку міри обертання.Методи і методологія: Визначаючі модуль міри обертання, зазвичай використовують поляризаційні матриці Мюллера. Використання цих матриць в умовах реєстрації тільки однієї лінійної поляризації дає змогу доволі точно встановити абсолютне значення міри обертання, але її знак залишається невизначеним через наявність певної симетрії матриць по відношенню до напрямку обертання площини лінійної поляризації. Якщо систему відомих рівнянь, з яких знаходиться міра обертання, доповнити додатковими складовими, які враховують внесок іоносфери та магнітосфери Землі, то можна побачити, що цей внесок завжди додатній у південній магнітній півкулі (в більшості північної географічної півкулі) та завжди від’ємний у північній магнітній півкулі (в більшості південної географічної півкулі). Крім того, він за абсолютним значенням завжди максимальний опівдні та мінімальний опівночі, коли концентрація іонів в іоносфері Землі відповідно максимальна та мінімальна. Урахування зазначених закономірностей дозволяє оцінити не тільки модуль міри обертання, але й її знак, провівши дві незалежні, зсунуті в часі, оцінки спостережуваного абсолютного значення міри обертання за різних ступенів іонізації іоносфери Землі.Результати: Показано, що застосування додаткових рівнянь, які враховують внесок іоносфери та магнітосфери Землі у міру обертання, дає змогу повністю визначити цей параметр з урахуванням його знаку навіть за допомогою антен, що реєструють лише одну лінійну поляризацію. Це дозволяє встановити всі поляризаційні параметри радіовипромінювання пульсарів або імпульсного чи континуального поляризованого радіовипромінювання інших космічних об’єктів.Висновки: Наведено результати вимірювань міри обертання для двох найближчих до Землі пульсарів, J0814+7429 (B0809+74), J0953+0755 (B0950+08), та виконано порівняння запропонованої методики її оцінки з вже відомими методиками.Ключові слова: імпульс; міра дисперсії; міра обертання; плазма; поляризація; пульсар; радіотелескопСтаття надійшла до редакції 12.11.2020Radio phys. radio astron. 2020, 25(4): 253-267СПИСОК ЛІТЕРАТУРИ1. Hewish A., Bell S. J., Pilkington J. D. H., Scott P. F., and Collins R. A. Observation of a Rapidly Pulsating Radio Source. Nature. 1968. Vol. 217, No. 5130. P. 709–713. DOI: 10.1038/217709a02. Radhakrishnan V. and Cooke D. J. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. 1969. Vol. 3. P. 225–229.3. Komesaroff M. M., Morris D., and Cooke D. J. Linear Polarization and Pulse Shape Measurements on Nine Pulsars. 1970. Astrophys. Lett. Vol. 5. P. 37–41.4. Backer D. C., Rankin J. M., and Campbell D. B. Orthogonal mode emission in geometric models of pulsar polarisation. Nature. 1976. Vol. 263. No. 5574. P. 202–207. DOI: 10.1038/263202a05. Edwards R. T. The polarization of drifting subpulses. Astron. Astrophys. 2004. Vol 426, Is. 2. P. 677–686 DOI: 10.1051/0004-6361:200410296. Ulyanov O. M., Shevtsova A. I., Mukha D. V., and Seredkina A. A. Investigation of the Earth ionosphere using the radio emission of pulsars. Balt. Astron. 2013. Vol. 22. P. 53–65. DOI: 10.1515/astro-2017-01477. Ульянов О. М., Шевцова А. И., Скорик А. О. Поляризационное зондирование магнитосферы пульсаров. Известия Крымской астрофизической обсерватории. 2013. Т. 109, № 4. С. 159–168.8. Ульянов О. М., Шевцова А. И., Скорик А. О. Алгоритмы определения поляризационных параметров радиоизлучения пульсаров. Радіофізика і радіоастрономія. 2014. Т. 19, № 2. С. 101–110. DOI: 10.15407/rpra19.02.1019. Noutsos A., Sobey C., Kondratiev V. I., Weltevrede P., Verbiest J. P. W., Karastergiou A., Kramer M., Kuniyoshi M., Alexov A., Breton R. P., Bilous A. V., Cooper S., Falcke H., Grießmeier J.-M., Hassall T. E., Hessels J. W. T., Keane E. F., Osłowski S., Pilia M., Serylak M., Stappers B. W., ter Veen S., van Leeuwen J., Zagkouris K., Anderson K., Bähren L., M. Bell, Broderick J., Carbone D., Cendes Y., Coenen T., Corbel S., Eislöffel J., Fender R., Garsden H., Jonker P., Law C., Markoff S., Masters J., Miller-Jones J., Molenaar G., Osten R., Pietka M., Rol E., Rowlinson A., Scheers B., Spreeuw H., Staley T., Stewart A., Swinbank J., Wijers R., Wijnands R., Wise M., Zarka P., and van der Horst A. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. 2015. Vol 576. id. A62. DOI: 10.1051/0004-6361/20142518610. Ulyanov O. M., Shevtsova A. I., Zakharenko V. V., Skoryk A. O., Vasylieva I. Y., and Plakhov M. S. Time and Polarization Radiation Characteristics of PSR J0242+6256 at the Decameter Wavelength Range. Kinemat. Phys. Celest. Bodies. 2018. Vol. 34, No. 4. P. 174–183. DOI: 10.3103/S0884591318040062.11. Dike V., Taylor G. B., Dowell J., and Stovall K. Detecting pulsar polarization below 100 MHz with the Long Wavelength Array. Mon. Not. R. Astron. Soc. 2020. Vol. 496, Is. 3. P. 3623–3634. DOI: 10.1093/mnras/staa178812. Melrose D. B., and Stoneham R. J. The natural wave modes in a pulsar magnetosphere. Proc. Astron. Soc. Aust. 1977. Vol. 3., Is. 2. P. 120–122. DOI: 10.1017/S132335800001501013. Petrova S. A. On the origin of orthogonal polarization modes in pulsar radio emission. Astron. Astrophys. 2001. Vol. 378, Is. 3. P. 883–897. DOI: 10.1051/0004-6361:2001129714. Schnitzeler D. H. F. M., Eatough R. P., Ferrière K., Kramer M., Lee K. J., Noutsos A. and Shannon R. M. Radio polarimetry of Galactic Centre pulsars. Mon. Not. R. Astron. Soc. 2016. Vol. 459, Is. 3. P. 3005–3011. DOI: 10.1093/mnras/stw84115. Mitra D., Basu R., Maciesiak K., Skrzypczak A., Melikidze G. I., Szary A., and Krzeszowski K. Meterwavelength Single-Pulse Polarimetric Emission Survey. Astrophys. J. 2016. Vol. 833. Is. 1. id. 28. DOI: 10.3847/1538-4357/833/1/2816. Гинзбург В. Л. Теоретическая физика и астрофизика, 3-е изд. Москва: Наука, 1987. 486 с.17. Железняков В. В. Излучение в астрофизической плазме. Москва: Янус-К, 1997. 528 с.18. Petrova S. A. Polarization transfer in a pulsar magnetosphere. Mon. Not. R. Astron. Soc. 2006. Vol. 366. Is. 4. P. 1539–1550. DOI: 10.1111/j.1365-2966.2005.09941.x19. Ulyanov O. M., Skoryk A. O., Shevtsova A. I., Plakhov M. S., and Ulyanova O. O. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. 2016. Vol. 455, Is. 1. P. 150–157. DOI: 10.1093/mnras/stv217220 Новиков А. Ю., Попов М. В., Согласнов В. А., Брук Ю. М., Устименко Б. Ю. Наблюдения пульсара PSR 0809+74 на частоте 25 МГц с временным разрешением 100 мкс. Астрономический журнал. 1984. Т. 61. № 2. С. 343–348.21. Ульянов О. М., Захаренко В. В., Коноваленко А. А., Лекашо А., Розолен К., Рукер Х. О. Обнаружение индивидуальных импульсов пульсаров В0809+74; В0834+06; В0943+10; В0950+08; В1133+16 в декаметровом диапазоне волн. Радіофізика і радіоастрономія. 2006. Т. 11, № 2. С. 113–134.22 Попов М. В., Кузьмин А. Д., Ульянов О. М., Дешпанде А. А., Ершов А. А., Захаренко В. В., Кондратьев В. И., Костюк С. В., Лосовский В. Я., Согласнов В. А. Мгновенные спектры гигантских импульсов пульсара в Крабовидной туманности от дециметрового до декаметрового диапазона радиоволн. Астрономический журнал. 2006. Т. 83. № 7. С. 630–637.23. Ульянов О. М., Дешпанде А., Захаренко В. В., Асгекар А., Шанкар У. Двухчастотные наблюдения шести пульсаров с использованием УТР-2 и GEETEE радиотелескопов. Радіофізика і радіоастрономія. 2007. Т. 12, № 1. С. 5–19.24. Ульянов О. М., Захаренко В. В., Брук Ю. М. Определение параметров субимпульсного излучения пульсаров в декаметровом диапазоне длин волн. Астрономический журнал. 2008. Т. 85. № 11. С. 1019–1027.25. Hankins T. H. and Rickett B. J. Pulsar signal processing. In: Methods in Computational Physics: Advances in Research and Applications. Volume 14 – Radio Astronomy. B. Alder, S. Fernbach, and M. Rotenberg, eds. New York, London: Academic Press, Ink., 1975. P. 55–129. DOI: 10.1016/B978-0-12-460814-6.50002-426. Скорик А. А., Ульянов О. М., Захаренко В. В., Шевцова А. И., Васильева Я. Ю., Плахов М. С., Кравцов И. П. Тонкая структура аномально интенсивных импульсов пульсара J0814+7429 в декаметровом диапазоне. Радіофізика і радіоастрономія. 2017. T. 22. № 2. С. 93–111. DOI: 10.15407/rpra22.02.09327. Cole T. W. and Pilkington J. D. H. Search for Pulsating Radio Sources in the Declination Range +44°<δ<+90°. Nature. 1968. Vol. 219, No. 5154. P. 574–576. DOI: 10.1038/219574a028. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 14 October 2020]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/29. Manchester R. N., Hobbs G. B., Teoh A., and Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005. Vol. 129, Is. 4. P. 1993–2006. DOI: 10.1086/42848830. Ul’yanov O. M. and Zakharenko V. V. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. 2012. Vol. 56, Is. 6. P. 417–429. DOI: 10.1134/S106377291206005431. Manchester R. N. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. Vol. 172. P. 43–52. DOI: 10.1086/15132632. Ulyanov O. M., Shevtsova A. I., and Skoryk A. O. Polarization Sounding of Pulsar Magnetosphere (Part I). ArXiv E-Prints. 2014. [online]. [viewed 24 October 2020]. Available from: arXiv:1411.6453 Видавничий дім «Академперіодика» 2020-11-30 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1345 10.15407/rpra25.04.253 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 4 (2020); 253 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 4 (2020); 253 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 4 (2020); 253 2415-7007 1027-9636 10.15407/rpra25.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1345/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY |