EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT
Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhance...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2021
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1361 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1361 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2021-09-22T10:50:46Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
radiation belt STEP-F instrument electrons magnetosphere drift L-shell particle flux density |
| spellingShingle |
radiation belt STEP-F instrument electrons magnetosphere drift L-shell particle flux density Dudnik, O. V. Yakovlev, O. V. EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| topic_facet |
radiation belt STEP-F instrument electrons magnetosphere drift L-shell particle flux density radiation belt STEP-F instrument electrons magnetosphere drift L-shell particle flux density радіаційний пояс прилад СТЕП-Ф електрони магнітосфера дрейфова L-оболонка щільність потоку частинок |
| format |
Article |
| author |
Dudnik, O. V. Yakovlev, O. V. |
| author_facet |
Dudnik, O. V. Yakovlev, O. V. |
| author_sort |
Dudnik, O. V. |
| title |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| title_short |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| title_full |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| title_fullStr |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| title_full_unstemmed |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT |
| title_sort |
evidence of the earth’s inner radiation belts during the low solar and geomagnetic activity obtained with the step-f instrument |
| title_alt |
EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT ВИЯВЛЕННЯ ВНУТРІШНІХ РАДІАЦІЙНИХ ПОЯСІВ ЗЕМЛІ У ПЕРІОД НИЗЬКОЇ СОНЯЧНОЇ І ГЕОМАГНІТНОЇ АКТИВНОСТІ ЗА ДАНИМИ ПРИЛАДУ СТЕП-Ф |
| description |
Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhanced subrelativistic electron fluxes at the altitudes of the low Earth orbit satellites.Design/methodology/approach: Finding and ascertainment of new radiation belts of the Earth were made by using the data analysis from the D1e channel of recording the electrons of energies of ΔEe=180–510 keV and protons of energies of ΔEp=3.5–3.7 MeV of the satellite telescope of electrons and protons (STEP-F) aboard the “CORONAS-Photon” Earth low-orbit satellite. For the analysis, the data array with the 2 s time resolution normalized onto the active area of the position-sensitive silicon matrix detector and onto the solid angle of view of the detector head of the instrument was used.Findings: A sustained structure of three electron radiation belts in the Earth’s magnetosphere was found at the low solar and geomagnetic activity in May 2009. The two belts are known since the beginning of the space age as the Van Allen radiation belts, another additional permanent layer is formed around the drift shell with the McIlwaine parameter of L = 1.65±0.05. On some days in May 2009, the new two inner radiation belts were observed simultaneously, one of those latter being recorded between the investigated sustained belt at L≈1.65 and the Van Allen inner belt at L≈2.52. Increased particle fluxes in this unstable belt have been formed with the drift shell L≈2.06±0.14.Conclusions: The new found inner radiation belts are recorded in a wide range of geographic longitudes λ, both at the ascending and descending nodes of the satellite orbit, from λ1≈150° to λ2≈290°. Separately in the Northern or in the Southern hemispheres, outside the outer edge of the outer radiation belt, at L≥7–8, there are cases of enhanced particle fl ux density in wide range of L-shells. These shells correspond to the high-latitude region of quasi-trapped energetic charged particles. Increased particle fluxes have been recorded up to the bow shock wave border of the Earth’s magnetosphere (L≈10-12).Key words: radiation belt, STEP-F instrument, electrons, magnetosphere, drift L-shell, particle flux densityManuscript submitted 23.07.2021Radio phys. radio astron. 2021, 26(3): 224-238REFERENCES1. PAULIKAS, G. A., 1975. Precipitation of Particles at Low and Middle Latitudes. Rev. Geophys. vol. 13, is. 5, pp. 709‒734. DOI: https://doi.org/10.1029/RG013i005p007092. SIBECK, D. G., MCENTIRE, R. W., LUI, A. T. Y., LOPEZ, R. E., and KRIMIGIS, S. M., 1987. Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms. J. Geophys. Res. Space Phys. vol. 92, is. A12, pp. 13485‒13497. DOI: https://doi.org/10.1029/JA092iA12p134853. TAKAHASHI, K., ANDERSON, B. J., OHTANI, S., REEVES, G. D., TAKAHASHI, S., SARRIS, T. E. and MURSULA, K., 1997. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets. J. Geophys. Res. Space Phys. vol. 102, is. A10, pp. 22117‒22130. DOI: https://doi.org/10.1029/97JA018704. BLAKE, J. B., KOLASINSKI, W. A., FILLIUS, R. W. and MULLEN, E. G., 1992. Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. vol. 19, is. 8, pp. 821‒824. DOI: https://doi.org/10.1029/92GL006245. LOOPER, M. D., BLAKE, J. B., MEWALDT, R. A., CUMMINGS, J. R. and BAKER, D. N., 1994. Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991. Geophys. Res. Lett. vol. 21, is. 19, pp. 2079‒2082. DOI: DOI: https://doi.org/10.1029/94GL015866. REEVES, G. D., MCADAMS, K. L., FRIEDEL, R. H. W. and O’BRIEN, T. P., 2003. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. vol. 30, is. 10, pp. 36-1‒36-4. DOI: https://doi.org/10.1029/2002GL0165137. VAMPOLA, A. L. and KUCK, G. A., 1978. Induced Precipitation of Inner Zone Electrons, 1. Observations. J. Geophys. Res. Space Phys. vol. 83, is. A6, pp. 2543‒2551. DOI: https://doi.org/10.1029/JA083iA06p025438. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., TAKENAKA, T., KIKUCHI, J. and DOKE, J., 1985. OHZORA High Energy Particle Observations. J. Geomag. Geoelectr. vol. 37, is. 3, pp. 329‒345. DOI: https://doi.org/10.5636/jgg.37.3299. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., KIKUCHI, J. and DOKE, T., 1988. Electron (0.19-3.2 MeV) and proton (0.58-35 MeV) precipitations observed by OHZORA satellite at low latitude zones L=1.6‒1.8. Planet. Space Sci. vol. 36, is. 6, pp. 591‒606. DOI: https://doi.org/10.1016/0032-0633(88)90028-110. GUSSENHOVEN, M. S., MULLEN, E. G. and BRAUTIGAM, D. H., 1996. Improved understanding of the Earth's radiation belts from the CRRES satellite. IEEE Trans. Nucl. Sci. vol. 43, is. 2, pp. 353‑368. DOI: https://doi.org/10.1109/23.49075511. DUDNIK, A. V., PERSIKOV, V. K., ZALYUBOVSKY, I. I., TIMAKOVA, T. G., KURBATOV, E. V., KOTOV YU. D. and YUROV, V. N., 2011. High-sensitivity STEP-F spectrometer–telescope for high-energy particles of the CORONAS-PHOTON satellite experiment. Sol. Sys. Res. vol. 45, is. 3, pp. 212‒220. DOI: https://doi.org/10.1134/S003809461102004312. DUDNIK, O. V., 2017. Satellite telescope of electrons and protons STEP-F of the space scientific project CORONAS-PHOTON. Visn. Nac. Acad. Nauk of Ukr. no. 11, pp. 53–265. (in Ukrainian). DOI: https://doi.org/10.15407/visn2017.11.05313. DUDNIK, O. V., SYLWESTER, J., KOWALIŃSKI, M. and BARYLAK, J., 2019. Utilization of design features of the particle telescope STEP-F and solar x-ray spectrophotometer SphinX for exploration of the Earth’s radiation belt properties. Proc. SPIE. vol. 11176 “Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments”. id. 111763L. DOI: https://doi.org/10.1117/12.253729614. DUDNIK, O. V., 2010. Investigation of the Earth’s radiation belts in May, 2009, at the low orbit satellite with the STEP-F instrument. Kosm. Nauka Tehnol. vol. 16, no. 5, pp. 12–28. (in Russian). DOI: https://doi.org/10.15407/knit2010.05.01215. DUDNIK, O. V., PODGORSKI, P., SYLWESTER, J., GBUREK, S., KOWALINSKI, M., SIARKOWSKI, M., PLOCIENIAK, S. and BAKALA, J., 2012. X-Ray Spectrophotometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS-PHOTON. Preliminary Results of the Joint Data Analysis. Sol. Sys. Res. vol. 46, is. 2, pp. 160‒169. DOI: https://doi.org/10.1134/S0038094612020025 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2021 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1361 |
| work_keys_str_mv |
AT dudnikov evidenceoftheearthsinnerradiationbeltsduringthelowsolarandgeomagneticactivityobtainedwiththestepfinstrument AT yakovlevov evidenceoftheearthsinnerradiationbeltsduringthelowsolarandgeomagneticactivityobtainedwiththestepfinstrument AT dudnikov viâvlennâvnutríšníhradíacíjnihpoâsívzemlíuperíodnizʹkoísonâčnoíígeomagnítnoíaktivnostízadanimipriladustepf AT yakovlevov viâvlennâvnutríšníhradíacíjnihpoâsívzemlíuperíodnizʹkoísonâčnoíígeomagnítnoíaktivnostízadanimipriladustepf |
| first_indexed |
2025-12-02T15:33:11Z |
| last_indexed |
2025-12-02T15:33:11Z |
| _version_ |
1850836448244137984 |
| spelling |
rpra-journalorgua-article-13612021-09-22T10:50:46Z EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT ВИЯВЛЕННЯ ВНУТРІШНІХ РАДІАЦІЙНИХ ПОЯСІВ ЗЕМЛІ У ПЕРІОД НИЗЬКОЇ СОНЯЧНОЇ І ГЕОМАГНІТНОЇ АКТИВНОСТІ ЗА ДАНИМИ ПРИЛАДУ СТЕП-Ф Dudnik, O. V. Yakovlev, O. V. radiation belt; STEP-F instrument; electrons; magnetosphere; drift L-shell; particle flux density radiation belt; STEP-F instrument; electrons; magnetosphere; drift L-shell; particle flux density радіаційний пояс; прилад СТЕП-Ф; електрони; магнітосфера; дрейфова L-оболонка; щільність потоку частинок Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhanced subrelativistic electron fluxes at the altitudes of the low Earth orbit satellites.Design/methodology/approach: Finding and ascertainment of new radiation belts of the Earth were made by using the data analysis from the D1e channel of recording the electrons of energies of ΔEe=180–510 keV and protons of energies of ΔEp=3.5–3.7 MeV of the satellite telescope of electrons and protons (STEP-F) aboard the “CORONAS-Photon” Earth low-orbit satellite. For the analysis, the data array with the 2 s time resolution normalized onto the active area of the position-sensitive silicon matrix detector and onto the solid angle of view of the detector head of the instrument was used.Findings: A sustained structure of three electron radiation belts in the Earth’s magnetosphere was found at the low solar and geomagnetic activity in May 2009. The two belts are known since the beginning of the space age as the Van Allen radiation belts, another additional permanent layer is formed around the drift shell with the McIlwaine parameter of L = 1.65±0.05. On some days in May 2009, the new two inner radiation belts were observed simultaneously, one of those latter being recorded between the investigated sustained belt at L≈1.65 and the Van Allen inner belt at L≈2.52. Increased particle fluxes in this unstable belt have been formed with the drift shell L≈2.06±0.14.Conclusions: The new found inner radiation belts are recorded in a wide range of geographic longitudes λ, both at the ascending and descending nodes of the satellite orbit, from λ1≈150° to λ2≈290°. Separately in the Northern or in the Southern hemispheres, outside the outer edge of the outer radiation belt, at L≥7–8, there are cases of enhanced particle fl ux density in wide range of L-shells. These shells correspond to the high-latitude region of quasi-trapped energetic charged particles. Increased particle fluxes have been recorded up to the bow shock wave border of the Earth’s magnetosphere (L≈10-12).Key words: radiation belt, STEP-F instrument, electrons, magnetosphere, drift L-shell, particle flux densityManuscript submitted 23.07.2021Radio phys. radio astron. 2021, 26(3): 224-238REFERENCES1. PAULIKAS, G. A., 1975. Precipitation of Particles at Low and Middle Latitudes. Rev. Geophys. vol. 13, is. 5, pp. 709‒734. DOI: https://doi.org/10.1029/RG013i005p007092. SIBECK, D. G., MCENTIRE, R. W., LUI, A. T. Y., LOPEZ, R. E., and KRIMIGIS, S. M., 1987. Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms. J. Geophys. Res. Space Phys. vol. 92, is. A12, pp. 13485‒13497. DOI: https://doi.org/10.1029/JA092iA12p134853. TAKAHASHI, K., ANDERSON, B. J., OHTANI, S., REEVES, G. D., TAKAHASHI, S., SARRIS, T. E. and MURSULA, K., 1997. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets. J. Geophys. Res. Space Phys. vol. 102, is. A10, pp. 22117‒22130. DOI: https://doi.org/10.1029/97JA018704. BLAKE, J. B., KOLASINSKI, W. A., FILLIUS, R. W. and MULLEN, E. G., 1992. Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. vol. 19, is. 8, pp. 821‒824. DOI: https://doi.org/10.1029/92GL006245. LOOPER, M. D., BLAKE, J. B., MEWALDT, R. A., CUMMINGS, J. R. and BAKER, D. N., 1994. Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991. Geophys. Res. Lett. vol. 21, is. 19, pp. 2079‒2082. DOI: DOI: https://doi.org/10.1029/94GL015866. REEVES, G. D., MCADAMS, K. L., FRIEDEL, R. H. W. and O’BRIEN, T. P., 2003. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. vol. 30, is. 10, pp. 36-1‒36-4. DOI: https://doi.org/10.1029/2002GL0165137. VAMPOLA, A. L. and KUCK, G. A., 1978. Induced Precipitation of Inner Zone Electrons, 1. Observations. J. Geophys. Res. Space Phys. vol. 83, is. A6, pp. 2543‒2551. DOI: https://doi.org/10.1029/JA083iA06p025438. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., TAKENAKA, T., KIKUCHI, J. and DOKE, J., 1985. OHZORA High Energy Particle Observations. J. Geomag. Geoelectr. vol. 37, is. 3, pp. 329‒345. DOI: https://doi.org/10.5636/jgg.37.3299. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., KIKUCHI, J. and DOKE, T., 1988. Electron (0.19-3.2 MeV) and proton (0.58-35 MeV) precipitations observed by OHZORA satellite at low latitude zones L=1.6‒1.8. Planet. Space Sci. vol. 36, is. 6, pp. 591‒606. DOI: https://doi.org/10.1016/0032-0633(88)90028-110. GUSSENHOVEN, M. S., MULLEN, E. G. and BRAUTIGAM, D. H., 1996. Improved understanding of the Earth's radiation belts from the CRRES satellite. IEEE Trans. Nucl. Sci. vol. 43, is. 2, pp. 353‑368. DOI: https://doi.org/10.1109/23.49075511. DUDNIK, A. V., PERSIKOV, V. K., ZALYUBOVSKY, I. I., TIMAKOVA, T. G., KURBATOV, E. V., KOTOV YU. D. and YUROV, V. N., 2011. High-sensitivity STEP-F spectrometer–telescope for high-energy particles of the CORONAS-PHOTON satellite experiment. Sol. Sys. Res. vol. 45, is. 3, pp. 212‒220. DOI: https://doi.org/10.1134/S003809461102004312. DUDNIK, O. V., 2017. Satellite telescope of electrons and protons STEP-F of the space scientific project CORONAS-PHOTON. Visn. Nac. Acad. Nauk of Ukr. no. 11, pp. 53–265. (in Ukrainian). DOI: https://doi.org/10.15407/visn2017.11.05313. DUDNIK, O. V., SYLWESTER, J., KOWALIŃSKI, M. and BARYLAK, J., 2019. Utilization of design features of the particle telescope STEP-F and solar x-ray spectrophotometer SphinX for exploration of the Earth’s radiation belt properties. Proc. SPIE. vol. 11176 “Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments”. id. 111763L. DOI: https://doi.org/10.1117/12.253729614. DUDNIK, O. V., 2010. Investigation of the Earth’s radiation belts in May, 2009, at the low orbit satellite with the STEP-F instrument. Kosm. Nauka Tehnol. vol. 16, no. 5, pp. 12–28. (in Russian). DOI: https://doi.org/10.15407/knit2010.05.01215. DUDNIK, O. V., PODGORSKI, P., SYLWESTER, J., GBUREK, S., KOWALINSKI, M., SIARKOWSKI, M., PLOCIENIAK, S. and BAKALA, J., 2012. X-Ray Spectrophotometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS-PHOTON. Preliminary Results of the Joint Data Analysis. Sol. Sys. Res. vol. 46, is. 2, pp. 160‒169. DOI: https://doi.org/10.1134/S0038094612020025 Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhanced subrelativistic electron fluxes at the altitudes of the low Earth orbit satellites.Design/methodology/approach: Finding and ascertainment of new radiation belts of the Earth were made by using the data analysis from the D1e channel of recording the electrons of energies of ΔEe=180–510 keV and protons of energies of ΔEp=3.5–3.7 MeV of the satellite telescope of electrons and protons (STEP-F) aboard the “CORONAS-Photon” Earth low-orbit satellite. For the analysis, the data array with the 2 s time resolution normalized onto the active area of the position-sensitive silicon matrix detector and onto the solid angle of view of the detector head of the instrument was used.Findings: A sustained structure of three electron radiation belts in the Earth’s magnetosphere was found at the low solar and geomagnetic activity in May 2009. The two belts are known since the beginning of the space age as the Van Allen radiation belts, another additional permanent layer is formed around the drift shell with the McIlwaine parameter of L = 1.65±0.05. On some days in May 2009, the new two inner radiation belts were observed simultaneously, one of those latter being recorded between the investigated sustained belt at L≈1.65 and the Van Allen inner belt at L≈2.52. Increased particle fluxes in this unstable belt have been formed with the drift shell L≈2.06±0.14.Conclusions: The new found inner radiation belts are recorded in a wide range of geographic longitudes λ, both at the ascending and descending nodes of the satellite orbit, from λ1≈150° to λ2≈290°. Separately in the Northern or in the Southern hemispheres, outside the outer edge of the outer radiation belt, at L≥7–8, there are cases of enhanced particle fl ux density in wide range of L-shells. These shells correspond to the high-latitude region of quasi-trapped energetic charged particles. Increased particle fluxes have been recorded up to the bow shock wave border of the Earth’s magnetosphere (L≈10-12). Key words: radiation belt, STEP-F instrument, electrons, magnetosphere, drift L-shell, particle flux densityManuscript submitted 23.07.2021Radio phys. radio astron. 2021, 26(3): 224-238REFERENCES1. PAULIKAS, G. A., 1975. Precipitation of Particles at Low and Middle Latitudes. Rev. Geophys. vol. 13, is. 5, pp. 709‒734. DOI: https://doi.org/10.1029/RG013i005p007092. SIBECK, D. G., MCENTIRE, R. W., LUI, A. T. Y., LOPEZ, R. E., and KRIMIGIS, S. M., 1987. Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms. J. Geophys. Res. Space Phys. vol. 92, is. A12, pp. 13485‒13497. DOI: https://doi.org/10.1029/JA092iA12p134853. TAKAHASHI, K., ANDERSON, B. J., OHTANI, S., REEVES, G. D., TAKAHASHI, S., SARRIS, T. E. and MURSULA, K., 1997. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets. J. Geophys. Res. Space Phys. vol. 102, is. A10, pp. 22117‒22130. DOI: https://doi.org/10.1029/97JA018704. BLAKE, J. B., KOLASINSKI, W. A., FILLIUS, R. W. and MULLEN, E. G., 1992. Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. vol. 19, is. 8, pp. 821‒824. DOI: https://doi.org/10.1029/92GL006245. LOOPER, M. D., BLAKE, J. B., MEWALDT, R. A., CUMMINGS, J. R. and BAKER, D. N., 1994. Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991. Geophys. Res. Lett. vol. 21, is. 19, pp. 2079‒2082. DOI: DOI: https://doi.org/10.1029/94GL015866. REEVES, G. D., MCADAMS, K. L., FRIEDEL, R. H. W. and O’BRIEN, T. P., 2003. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. vol. 30, is. 10, pp. 36-1‒36-4. DOI: https://doi.org/10.1029/2002GL0165137. VAMPOLA, A. L. and KUCK, G. A., 1978. Induced Precipitation of Inner Zone Electrons, 1. Observations. J. Geophys. Res. Space Phys. vol. 83, is. A6, pp. 2543‒2551. DOI: https://doi.org/10.1029/JA083iA06p025438. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., TAKENAKA, T., KIKUCHI, J. and DOKE, J., 1985. OHZORA High Energy Particle Observations. J. Geomag. Geoelectr. vol. 37, is. 3, pp. 329‒345. DOI: https://doi.org/10.5636/jgg.37.3299. NAGATA, K., KOHNO, T., MURAKAMI, H., NAKAMOTO, A., HASEBE, N., KIKUCHI, J. and DOKE, T., 1988. Electron (0.19-3.2 MeV) and proton (0.58-35 MeV) precipitations observed by OHZORA satellite at low latitude zones L=1.6‒1.8. Planet. Space Sci. vol. 36, is. 6, pp. 591‒606. DOI: https://doi.org/10.1016/0032-0633(88)90028-110. GUSSENHOVEN, M. S., MULLEN, E. G. and BRAUTIGAM, D. H., 1996. Improved understanding of the Earth's radiation belts from the CRRES satellite. IEEE Trans. Nucl. Sci. vol. 43, is. 2, pp. 353‑368. DOI: https://doi.org/10.1109/23.49075511. DUDNIK, A. V., PERSIKOV, V. K., ZALYUBOVSKY, I. I., TIMAKOVA, T. G., KURBATOV, E. V., KOTOV YU. D. and YUROV, V. N., 2011. High-sensitivity STEP-F spectrometer–telescope for high-energy particles of the CORONAS-PHOTON satellite experiment. Sol. Sys. Res. vol. 45, is. 3, pp. 212‒220. DOI: https://doi.org/10.1134/S003809461102004312. DUDNIK, O. V., 2017. Satellite telescope of electrons and protons STEP-F of the space scientific project CORONAS-PHOTON. Visn. Nac. Acad. Nauk of Ukr. no. 11, pp. 53–265. (in Ukrainian). DOI: https://doi.org/10.15407/visn2017.11.05313. DUDNIK, O. V., SYLWESTER, J., KOWALIŃSKI, M. and BARYLAK, J., 2019. Utilization of design features of the particle telescope STEP-F and solar x-ray spectrophotometer SphinX for exploration of the Earth’s radiation belt properties. Proc. SPIE. vol. 11176 “Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments”. id. 111763L. DOI: https://doi.org/10.1117/12.253729614. DUDNIK, O. V., 2010. Investigation of the Earth’s radiation belts in May, 2009, at the low orbit satellite with the STEP-F instrument. Kosm. Nauka Tehnol. vol. 16, no. 5, pp. 12–28. (in Russian). DOI: https://doi.org/10.15407/knit2010.05.01215. DUDNIK, O. V., PODGORSKI, P., SYLWESTER, J., GBUREK, S., KOWALINSKI, M., SIARKOWSKI, M., PLOCIENIAK, S. and BAKALA, J., 2012. X-Ray Spectrophotometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS-PHOTON. Preliminary Results of the Joint Data Analysis. Sol. Sys. Res. vol. 46, is. 2, pp. 160‒169. DOI: https://doi.org/10.1134/S0038094612020025 УДК 53.05; 53.09; 539.1Предмет і мета роботи: Предметом досліджень є просторово-часові розподіли високоенергійних заряджених частинок усередині магнітосфери Землі поза зоною Південно-Атлантичної магнітної аномалії у період мінімуму 11-річного циклу сонячної активності. Метою роботи є пошуки і визначення сталих та нестійких додаткових просторових зон підвищених потоків електронів субрелятивістських енергій на висотах польотів низькоорбітальних штучних супутників Землі.Методи і методологія: Пошук і встановлення додаткових радіаційних поясів Землі здійснено за аналізом даних каналу D1e реєстрації електронів з енергіями ΔEe=180–510 кеВ і протонів з енергіями ΔEp=3.5–3.7 МеВ супутникового телескопу електронів і протонів СТЕП-Ф на борту низькоорбітального наукового супутника Землі “КОРОНАС-Фотон”. Для аналізу використовувались інформаційні масиви з часовою роздільною здатністю 2 с, нормовані на активну площу позиційно-чутливого кремнієвого матричного детектора та тілесний кут зору детекторної голівки приладу.Результати: Виявлено сталу структуру з трьох електронних радіаційних поясів у земній магнітосфері в період низької сонячної і геомагнітної активності у травні 2009 р. Два пояси є відомими з початку космічної ери радіаційними поясами Ван Алена, ще один додатковий сталий шар формується навколо дрейфової оболонки з параметром Мак-Ілвайна L=1.65±0.05. В окремі дні травня 2009 р., крім цього додаткового шару, одночасно з ним спостерігався ще один нестійкий внутрішній радіаційний пояс, що формувався час від часу між досліджуваним сталим поясом на L≈1.65 і внутрішнім поясом Ван Алена на L≈2.52. Підвищені потоки частинок у цьому нестійкому поясі формувалися навколо дрейфової оболонки L=2.06±0.14.Висновки: Додаткові внутрішні радіаційні пояси реєструються в широкій смузі географічних довгот λ як на висхідних, так і на низхідних ділянках орбіти супутника, від λ1≈150° до λ2≈290°. Окремо у Північній або Південній півкулі поза межами зовнішнього краю зовнішнього радіаційного поясу на L≥7-8 спостерігаються випадки підвищення щільності потоку частинок в широкій смузі L-оболонок, які відповідають високоширотній області квазізахвату високоенергійних заряджених частинок. Підвищені потоки спостерігаються аж до меж головної ударної хвилі земної магнітосфери (L≈10-12).Ключові слова: радіаційний пояс, прилад СТЕП-Ф, електрони, магнітосфера, дрейфова L-оболонка, щільність потоку частинокСтаття надійшла до редакції 23.07.2021Radio phys. radio astron. 2021, 26(3): 224-238СПИСОК ЛІТЕРАТУРИ1. Paulikas G. A. Precipitation of Particles at Low and Middle Latitudes. Rev. Geophys. 1975. Vol. 13, Is. 5. P. 709‒734. DOI: 10.1029/RG013i005p007092. Sibeck D. G., McEntire R. W., Lui A. T. Y., Lopez R. E., and Krimigis S. M. Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms. J. Geophys. Res. Space Phys. 1987. Vol. 92, Is. A12. P. 13485‒13497. DOI: 10.1029/JA092iA12p134853. Takahashi K., Anderson B. J., Ohtani S., Reeves G. D., Takahashi S., Sarris T. E., and Mursula K. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets. J. Geophys. Res. Space Phys. 1997. Vol. 102, Is. A10. P. 22117‒22130. DOI: 10.1029/97JA018704. Blake J. B., Kolasinski W. A., Fillius R. W., and Mullen E. G. Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Research. Lett. 1992. Vol. 19, Is. 8. P. 821‒824. DOI: 10.1029/92GL006245. Looper M. D., Blake J. B., Mewaldt R. A., Cummings J. R., and Baker D. N. Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991. Geophys. Research. Lett. 1994. Vol. 21, Is. 19. P. 2079‒2082. DOI: 10.1029/94GL015866. Reeves G. D., McAdams K. L., Friedel R. H. W., and O’Brien T. P. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Research. Lett. 2003. Vol. 30, Is. 10. P. 36-1‒36-4. DOI: 10.1029/2002GL0165137. Vampola A. L. and Kuck G. A. Induced Precipitation of Inner Zone Electrons, 1. Observations. J. Geophys. Res. Space Phys. 1978. Vol. 83, Is. A6. P. 2543‒2551. DOI: 10.1029/JA083iA06p025438. Nagata K., Kohno T., Murakami H., Nakamoto A., Hasebe N., Takenaka T., Kikuchi J., and Doke J. OHZORA High Energy Particle Observations. J. Geomag. Geoelectr. 1985. Vol. 37, Is. 3. P. 329‒345. DOI: 10.5636/jgg.37.3299. Nagata K., Kohno T., Murakami H., Nakamoto A., Hasebe N., Kikuchi J., and Doke T. Electron (0.19‒3.2 MeV) and proton (0.58‒35 MeV) precipitations observed by OHZORA satellite at low latitude zones L=1.6‒1.8. Planet. Space Sci. 1988. Vol. 36, Is. 6. P. 591‒606. DOI: 10.1016/0032-0633(88)90028-110. Gussenhoven M. S., Mullen E. G., and Brautigam D. H. Improved understanding of the Earth’s radiation belts from the CRRES satellite. IEEE Trans. Nucl. Sci. 1996. Vol. 43, Is. 2. P. 353‒368. DOI: 10.1109/23.49075511. Dudnik A.V., Persikov V. K., Zalyubovsky I. I., Timakova T. G., Kurbatov E. V., Kotov Yu. D., and Yurov V. N. High-sensitivity STEP-F spectrometer–telescope for high-energy particles of the CORONAS-PHOTON satellite experiment. Sol. Sys. Res. 2011. Vol. 45, Is. 3. P. 212‒220. DOI: 10.1134/S003809461102004312. Дудник О. В. Супутниковий телескоп електронів і протонів СТЕП-Ф наукового космічного проекту «КОРОНАС-Фотон». Вісник НАН України. 2017. № 11. P. 53‒65. DOI: 10.15407/visn2017.11.05313. Dudnik O. V., Sylwester J., Kowaliński M., Barylak J. Utilization of design features of the particle telescope STEP-F and solar x-ray spectrophotometer SphinX for exploration of the Earth’s radiation belt properties. Proc. SPIE. 2019. Vol. 11176 “Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments”. id. 111763L. DOI: 10.1117/12.253729614. Дудник А. В. Исследование радиационных поясов Земли в мае 2009 года на низкоорбитальном спутнике с помощью прибора СТЭП-Ф. Космічна наука і технологія. 2010. Т. 16, № 5. С. 12‒28. DOI: 10.15407/knit2010.05.01215. Dudnik O. V., Podgorski P., Sylwester J., Gburek S., Kowalinski M., Siarkowski M., Plocieniak S., and Bakala J. X-Ray Spectrophotometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS-PHOTON. Preliminary Results of the Joint Data Analysis. Sol. Sys. Res. 2012. Vol. 46, Is. 2. P. 160‒169. DOI: 10.1134/S0038094612020025 Видавничий дім «Академперіодика» 2021-09-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1361 10.15407/rpra26.03.224 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 3 (2021); 224 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 3 (2021); 224 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 3 (2021); 224 2415-7007 1027-9636 10.15407/rpra26.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1361/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY |