INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES
Purpose: This work aims at investigating the zinc atoms in the triplet preionization – Rydberg states. The energy levels of atoms having two electrons outside the closed shell were studied mainly by the optical spectroscopy methods. However, just using the microwave spectroscopy to measure the frequ...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2021
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1365 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1365 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2021-09-22T11:46:43Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
zinc atom triplet states of atoms Rydberg states laser excitation microwave radiation |
| spellingShingle |
zinc atom triplet states of atoms Rydberg states laser excitation microwave radiation Pogrebnyak, N. I. Dyubko, S. F. Perepechai, M. P. Kutsenko, A. S. INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| topic_facet |
zinc atom triplet states of atoms Rydberg states laser excitation microwave radiation zinc atom triplet states of atoms Rydberg states laser excitation microwave radiation атом цинку триплетні стани атомів рідбергівські стани лазерне збудження мікрохвильове випромінювання |
| format |
Article |
| author |
Pogrebnyak, N. I. Dyubko, S. F. Perepechai, M. P. Kutsenko, A. S. |
| author_facet |
Pogrebnyak, N. I. Dyubko, S. F. Perepechai, M. P. Kutsenko, A. S. |
| author_sort |
Pogrebnyak, N. I. |
| title |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| title_short |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| title_full |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| title_fullStr |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| title_full_unstemmed |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES |
| title_sort |
investigation of the spectrum of zn i atoms in the triplet rydberg states |
| title_alt |
INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES ДОСЛІДЖЕННЯ СПЕКТРУ АТОМІВ Zn I В ТРИПЛЕТНИХ РІДБЕРГІВСЬКИХ СТАНАХ |
| description |
Purpose: This work aims at investigating the zinc atoms in the triplet preionization – Rydberg states. The energy levels of atoms having two electrons outside the closed shell were studied mainly by the optical spectroscopy methods. However, just using the microwave spectroscopy to measure the frequency of transitions between the two Rydberg states allows to increase the accuracy of measurements in two or more orders of magnitude.Disign/methodology/approach:A line of three dye lasers is used to excite the zinc atoms into the triplet Rydberg states with a predetermined set of quantum numbers. The radiation of the first two of them is transformed into the second harmonic in nonlinear crystals. Dye lasers are excited by the radiation of the second harmonic of one YAG: ND3+ laser. All three radiations are reduced to the zone of interaction with the laser and the microwave radiation, which is located between the plates of the ionization cell, where the pulsed electric field is created. The excited Rydberg atoms are recorded with the field ionization procedure. The beam of neutral atoms is created by an effusion cell under the vacuum conditions, the residual pressure does not exceed 10-5 mm Hg. A pulsed electric field of some certain intensity results inionization of atoms excited by microwave radiation and in acceleration of electrons, which have appeared in the direction of the secondary electron multiplier, though being insufficient for ionization of atoms excited only by the laser radiation and which are initial for interaction with microwaves. By scanning the microwave radiation frequency with the given step and measuring the signal intensity of the secondary electron multiplier, the excitation spectrum of the atoms under study can be obtained.Findings: Using the created laser-microwave spectrometer, the frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured. From the analysis made of the transition frequencies, the quantum defect decomposition constants were obtained by the Ritz formula for the D, F, and G states of zinc atoms. Conclusions: The frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured that allowed obtaining the quantum defect decomposition constants according to the Ritz formula for the D, F and G states of zinc atoms, that in turn had allowed to calculate the energy of these terms and the transition frequencies at least in two orders of magnitude more accurately as against the similar measurements made by the optical spectroscopy.Key words: zinc atom, triplet states of atoms, Rydberg states, laser excitation, microwave radiationManuscript submitted 17.06.2021Radio phys. radio astron. 2021, 26(3): 256-269REFERENCES1. BIEMONT, E. and GODEFROID, M., 1980. A Reassessment of the Zinc Solar Abundance. Astron. Astrophys. vl. 84, no. 3, p. 361–363.2. SNEDEN, C., GRATTON, R. G. and CROCKER, D. A., 1991. Trends in copper and zinc abundances for disk and halo stars. Astron. Astrophys. vol. 246, no. 2, pp. 354–367.3. BROWN, C. M. and TILFORD, S. G., 1975. Absorption spectra of Zn i and Cd i in the 1300–1750 Å region. J. Opt. Soc. Am. vol. 65, is. 12, pp. 1404–1409. DOI: https://doi.org/10.1364/JOSA.65.0014044. GULLBERG, D. and LITZEN, U., 2000. Accurately measured wavelengths of Zn I and Zn II Lines of Astrophysical interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a006525. COMMENTS.UA., 2021. What diseases cause zinc deficiency in the body. [online] (in Rusian). [viewed 9 June 2021]. Available from: https://health.comments.ua/ua/news/vitamins-and-nutritional-supplements/yaki-zahvoryuvannya-viklikae-deficit-cinku-v-organizmi-676087.html6. NIST., 2021. Atomic Spectra Database [online]. [viewed 9 June 2021]. Available from: http://physics.nist.gov/asd7. ESHKOBILOV, N. B., 2000. Laser spectroscopy of the Rydberg states of atoms group IIB (Zn, Cd, Hg). J. Appl. Spectrosc. vol. 67, no. 2, pp. 343–345. DOI: https://doi.org/10.1007/BF026818568. NADEEM, A., NAWAZ, M., BHATTI, S. A., and BAIG, M. A., 2006. Multi-step laser excitation of the Highly excited states of zinc. Opt. Commun. Vol. 259, Is. 2, pp. 834–839. DOI: https://doi.org/10.1016/j.optcom.2005.08.0759. NAWAZ, M., NADEEM, A., BHATTI, S. A. and BAIG, M. A., 2006. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc. J. Phys. B: At. Mol. Opt. Phys. vol 39, no. 4, pp. 871–882. DOI: https://doi.org/10.1088/0953-4075/39/4/01110. SUGAR, J. and MUSGROVE, A., 1995. Energy levels of Zinc, Zn I through Zn XXX. J. Phys. Chem. Ref. Data. vol. 24, no. 6, pp. 1803–1872. DOI: https://doi.org/10.1063/1.55597111. KUTSENKO, A. S., MACADAM, K. B., DYUBKO, S. F. and POGREBNYAK, N.L., 2015. Millimeter-wave spectroscopy of Zn I in 1D2, 1F3 and 1G4 Rydberg states. J. Phys. B: At. Mol. Opt. Phys. vol. 48, no. 24, id. 245005. DOI: https://doi.org/10.1088/0953-4075/48/24/24500512. POGREBNYAK, N. L., DYUBKO, S. F., ALEKSEEV, E. A., PEREPECHAI, M. P., TKACHEV, A. I. and VLASENKO, S. A., 2019. Laser-microwave spectrometer and spectroscopy of zinc atom in triplet rydberg states. Radio Phys. Radio Astron. vol. 24, no. 4. pp. 272–284. (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.04.27213. GALLAGHER, T. F., 1994. Rydberg Atoms. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO978051152453014. CIVIŠ, S., FERUS, M., CHERNOV, V. E., ZANOZINA, E. M. and JUHA, L., 2014. Zn I spectra in the 1300-6500 cm-1 range. J. Quant. Spectrosc. Radiat. Transf. vol. 134, pp. 64–73. DOI: https://doi.org/10.1016/j.jqsrt.2013.10.01715. GULLBERG, D. and LITZÉN, U., 2000. Accurately Measured Wavelengths of Zn I and Zn II Lines of Astrophysical Interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a0065216. MUNTENBRUCH, H., 1960. Die vervollständigung des termschemas von Zn I mit hilfe einer hohlkathodenentladung. Spectrochimica Acta. vol. 16, is. 9, pp. 1040–1053, E5-E6. DOI: https://doi.org/10.1016/0371-1951(60)80144-017. KOMPITSAS, M., BAHARIS, C. and PAN, Z., 1994. Rydberg states of zinc and measurement of the dipole polarizability of the Zn+ ion. J. Opt. Soc. Am. B. vol. 11, no. 5, pp. 697–702. DOI: https://doi.org/10.1364/JOSAB.11.00069718. DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and MACADAM, K. B., 2003. Microwave spectroscopy of Al I Rydberg states: F terms. J. Phys. B: At. Mol. Opt. Phys. vol. 36, no. 18, pp. 3797–3804. DOI: https://doi.org/10.1088/0953-4075/36/18/30819. SHAH, M., AISHA, G., SHAHZADA, S., HAQ, S. U. and NADEEM, A., 2018. Step-Wise Laser Excitation of the 4snf 3F Rydberg States of Neutral Zinc. Spectrosc. Lett. vol. 51, is. 1, pp. 1–6. DOI: https://doi.org/10.1080/00387010.2017.1357636 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2021 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1365 |
| work_keys_str_mv |
AT pogrebnyakni investigationofthespectrumofzniatomsinthetripletrydbergstates AT dyubkosf investigationofthespectrumofzniatomsinthetripletrydbergstates AT perepechaimp investigationofthespectrumofzniatomsinthetripletrydbergstates AT kutsenkoas investigationofthespectrumofzniatomsinthetripletrydbergstates AT pogrebnyakni doslídžennâspektruatomívznivtripletnihrídbergívsʹkihstanah AT dyubkosf doslídžennâspektruatomívznivtripletnihrídbergívsʹkihstanah AT perepechaimp doslídžennâspektruatomívznivtripletnihrídbergívsʹkihstanah AT kutsenkoas doslídžennâspektruatomívznivtripletnihrídbergívsʹkihstanah |
| first_indexed |
2025-12-02T15:33:21Z |
| last_indexed |
2025-12-02T15:33:21Z |
| _version_ |
1850836448576536576 |
| spelling |
rpra-journalorgua-article-13652021-09-22T11:46:43Z INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES INVESTIGATION OF THE SPECTRUM OF ZN I ATOMS IN THE TRIPLET RYDBERG STATES ДОСЛІДЖЕННЯ СПЕКТРУ АТОМІВ Zn I В ТРИПЛЕТНИХ РІДБЕРГІВСЬКИХ СТАНАХ Pogrebnyak, N. I. Dyubko, S. F. Perepechai, M. P. Kutsenko, A. S. zinc atom; triplet states of atoms; Rydberg states; laser excitation; microwave radiation zinc atom; triplet states of atoms; Rydberg states; laser excitation; microwave radiation атом цинку; триплетні стани атомів; рідбергівські стани; лазерне збудження; мікрохвильове випромінювання Purpose: This work aims at investigating the zinc atoms in the triplet preionization – Rydberg states. The energy levels of atoms having two electrons outside the closed shell were studied mainly by the optical spectroscopy methods. However, just using the microwave spectroscopy to measure the frequency of transitions between the two Rydberg states allows to increase the accuracy of measurements in two or more orders of magnitude.Disign/methodology/approach:A line of three dye lasers is used to excite the zinc atoms into the triplet Rydberg states with a predetermined set of quantum numbers. The radiation of the first two of them is transformed into the second harmonic in nonlinear crystals. Dye lasers are excited by the radiation of the second harmonic of one YAG: ND3+ laser. All three radiations are reduced to the zone of interaction with the laser and the microwave radiation, which is located between the plates of the ionization cell, where the pulsed electric field is created. The excited Rydberg atoms are recorded with the field ionization procedure. The beam of neutral atoms is created by an effusion cell under the vacuum conditions, the residual pressure does not exceed 10-5 mm Hg. A pulsed electric field of some certain intensity results inionization of atoms excited by microwave radiation and in acceleration of electrons, which have appeared in the direction of the secondary electron multiplier, though being insufficient for ionization of atoms excited only by the laser radiation and which are initial for interaction with microwaves. By scanning the microwave radiation frequency with the given step and measuring the signal intensity of the secondary electron multiplier, the excitation spectrum of the atoms under study can be obtained.Findings: Using the created laser-microwave spectrometer, the frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured. From the analysis made of the transition frequencies, the quantum defect decomposition constants were obtained by the Ritz formula for the D, F, and G states of zinc atoms. Conclusions: The frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured that allowed obtaining the quantum defect decomposition constants according to the Ritz formula for the D, F and G states of zinc atoms, that in turn had allowed to calculate the energy of these terms and the transition frequencies at least in two orders of magnitude more accurately as against the similar measurements made by the optical spectroscopy.Key words: zinc atom, triplet states of atoms, Rydberg states, laser excitation, microwave radiationManuscript submitted 17.06.2021Radio phys. radio astron. 2021, 26(3): 256-269REFERENCES1. BIEMONT, E. and GODEFROID, M., 1980. A Reassessment of the Zinc Solar Abundance. Astron. Astrophys. vl. 84, no. 3, p. 361–363.2. SNEDEN, C., GRATTON, R. G. and CROCKER, D. A., 1991. Trends in copper and zinc abundances for disk and halo stars. Astron. Astrophys. vol. 246, no. 2, pp. 354–367.3. BROWN, C. M. and TILFORD, S. G., 1975. Absorption spectra of Zn i and Cd i in the 1300–1750 Å region. J. Opt. Soc. Am. vol. 65, is. 12, pp. 1404–1409. DOI: https://doi.org/10.1364/JOSA.65.0014044. GULLBERG, D. and LITZEN, U., 2000. Accurately measured wavelengths of Zn I and Zn II Lines of Astrophysical interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a006525. COMMENTS.UA., 2021. What diseases cause zinc deficiency in the body. [online] (in Rusian). [viewed 9 June 2021]. Available from: https://health.comments.ua/ua/news/vitamins-and-nutritional-supplements/yaki-zahvoryuvannya-viklikae-deficit-cinku-v-organizmi-676087.html6. NIST., 2021. Atomic Spectra Database [online]. [viewed 9 June 2021]. Available from: http://physics.nist.gov/asd7. ESHKOBILOV, N. B., 2000. Laser spectroscopy of the Rydberg states of atoms group IIB (Zn, Cd, Hg). J. Appl. Spectrosc. vol. 67, no. 2, pp. 343–345. DOI: https://doi.org/10.1007/BF026818568. NADEEM, A., NAWAZ, M., BHATTI, S. A., and BAIG, M. A., 2006. Multi-step laser excitation of the Highly excited states of zinc. Opt. Commun. Vol. 259, Is. 2, pp. 834–839. DOI: https://doi.org/10.1016/j.optcom.2005.08.0759. NAWAZ, M., NADEEM, A., BHATTI, S. A. and BAIG, M. A., 2006. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc. J. Phys. B: At. Mol. Opt. Phys. vol 39, no. 4, pp. 871–882. DOI: https://doi.org/10.1088/0953-4075/39/4/01110. SUGAR, J. and MUSGROVE, A., 1995. Energy levels of Zinc, Zn I through Zn XXX. J. Phys. Chem. Ref. Data. vol. 24, no. 6, pp. 1803–1872. DOI: https://doi.org/10.1063/1.55597111. KUTSENKO, A. S., MACADAM, K. B., DYUBKO, S. F. and POGREBNYAK, N.L., 2015. Millimeter-wave spectroscopy of Zn I in 1D2, 1F3 and 1G4 Rydberg states. J. Phys. B: At. Mol. Opt. Phys. vol. 48, no. 24, id. 245005. DOI: https://doi.org/10.1088/0953-4075/48/24/24500512. POGREBNYAK, N. L., DYUBKO, S. F., ALEKSEEV, E. A., PEREPECHAI, M. P., TKACHEV, A. I. and VLASENKO, S. A., 2019. Laser-microwave spectrometer and spectroscopy of zinc atom in triplet rydberg states. Radio Phys. Radio Astron. vol. 24, no. 4. pp. 272–284. (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.04.27213. GALLAGHER, T. F., 1994. Rydberg Atoms. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO978051152453014. CIVIŠ, S., FERUS, M., CHERNOV, V. E., ZANOZINA, E. M. and JUHA, L., 2014. Zn I spectra in the 1300-6500 cm-1 range. J. Quant. Spectrosc. Radiat. Transf. vol. 134, pp. 64–73. DOI: https://doi.org/10.1016/j.jqsrt.2013.10.01715. GULLBERG, D. and LITZÉN, U., 2000. Accurately Measured Wavelengths of Zn I and Zn II Lines of Astrophysical Interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a0065216. MUNTENBRUCH, H., 1960. Die vervollständigung des termschemas von Zn I mit hilfe einer hohlkathodenentladung. Spectrochimica Acta. vol. 16, is. 9, pp. 1040–1053, E5-E6. DOI: https://doi.org/10.1016/0371-1951(60)80144-017. KOMPITSAS, M., BAHARIS, C. and PAN, Z., 1994. Rydberg states of zinc and measurement of the dipole polarizability of the Zn+ ion. J. Opt. Soc. Am. B. vol. 11, no. 5, pp. 697–702. DOI: https://doi.org/10.1364/JOSAB.11.00069718. DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and MACADAM, K. B., 2003. Microwave spectroscopy of Al I Rydberg states: F terms. J. Phys. B: At. Mol. Opt. Phys. vol. 36, no. 18, pp. 3797–3804. DOI: https://doi.org/10.1088/0953-4075/36/18/30819. SHAH, M., AISHA, G., SHAHZADA, S., HAQ, S. U. and NADEEM, A., 2018. Step-Wise Laser Excitation of the 4snf 3F Rydberg States of Neutral Zinc. Spectrosc. Lett. vol. 51, is. 1, pp. 1–6. DOI: https://doi.org/10.1080/00387010.2017.1357636 Purpose: This work aims at investigating the zinc atoms in the triplet preionization – Rydberg states. The energy levels of atoms having two electrons outside the closed shell were studied mainly by the optical spectroscopy methods. However, just using the microwave spectroscopy to measure the frequency of transitions between the two Rydberg states allows to increase the accuracy of measurements in two or more orders of magnitude.Disign/methodology/approach:A line of three dye lasers is used to excite the zinc atoms into the triplet Rydberg states with a predetermined set of quantum numbers. The radiation of the first two of them is transformed into the second harmonic in nonlinear crystals. Dye lasers are excited by the radiation of the second harmonic of one YAG: ND3+ laser. All three radiations are reduced to the zone of interaction with the laser and the microwave radiation, which is located between the plates of the ionization cell, where the pulsed electric field is created. The excited Rydberg atoms are recorded with the field ionization procedure. The beam of neutral atoms is created by an effusion cell under the vacuum conditions, the residual pressure does not exceed 10-5 mm Hg. A pulsed electric field of some certain intensity results inionization of atoms excited by microwave radiation and in acceleration of electrons, which have appeared in the direction of the secondary electron multiplier, though being insufficient for ionization of atoms excited only by the laser radiation and which are initial for interaction with microwaves. By scanning the microwave radiation frequency with the given step and measuring the signal intensity of the secondary electron multiplier, the excitation spectrum of the atoms under study can be obtained.Findings: Using the created laser-microwave spectrometer, the frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured. From the analysis made of the transition frequencies, the quantum defect decomposition constants were obtained by the Ritz formula for the D, F, and G states of zinc atoms. Conclusions: The frequencies of the F→D, F→F and F→G transitions between the triplet Rydberg states of zinc atoms were measured that allowed obtaining the quantum defect decomposition constants according to the Ritz formula for the D, F and G states of zinc atoms, that in turn had allowed to calculate the energy of these terms and the transition frequencies at least in two orders of magnitude more accurately as against the similar measurements made by the optical spectroscopy.Key words: zinc atom, triplet states of atoms, Rydberg states, laser excitation, microwave radiationManuscript submitted 17.06.2021Radio phys. radio astron. 2021, 26(3): 256-269REFERENCES 1. BIEMONT, E. and GODEFROID, M., 1980. A Reassessment of the Zinc Solar Abundance. Astron. Astrophys. vl. 84, no. 3, p. 361–363.2. SNEDEN, C., GRATTON, R. G. and CROCKER, D. A., 1991. Trends in copper and zinc abundances for disk and halo stars. Astron. Astrophys. vol. 246, no. 2, pp. 354–367.3. BROWN, C. M. and TILFORD, S. G., 1975. Absorption spectra of Zn i and Cd i in the 1300–1750 Å region. J. Opt. Soc. Am. vol. 65, is. 12, pp. 1404–1409. DOI: https://doi.org/10.1364/JOSA.65.0014044. GULLBERG, D. and LITZEN, U., 2000. Accurately measured wavelengths of Zn I and Zn II Lines of Astrophysical interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a006525. COMMENTS.UA., 2021. What diseases cause zinc deficiency in the body. [online] (in Rusian). [viewed 9 June 2021]. Available from: https://health.comments.ua/ua/news/vitamins-and-nutritional-supplements/yaki-zahvoryuvannya-viklikae-deficit-cinku-v-organizmi-676087.html6. NIST., 2021. Atomic Spectra Database [online]. [viewed 9 June 2021]. Available from: http://physics.nist.gov/asd7. ESHKOBILOV, N. B., 2000. Laser spectroscopy of the Rydberg states of atoms group IIB (Zn, Cd, Hg). J. Appl. Spectrosc. vol. 67, no. 2, pp. 343–345. DOI: https://doi.org/10.1007/BF026818568. NADEEM, A., NAWAZ, M., BHATTI, S. A., and BAIG, M. A., 2006. Multi-step laser excitation of the Highly excited states of zinc. Opt. Commun. Vol. 259, Is. 2, pp. 834–839. DOI: https://doi.org/10.1016/j.optcom.2005.08.0759. NAWAZ, M., NADEEM, A., BHATTI, S. A. and BAIG, M. A., 2006. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc. J. Phys. B: At. Mol. Opt. Phys. vol 39, no. 4, pp. 871–882. DOI: https://doi.org/10.1088/0953-4075/39/4/01110. SUGAR, J. and MUSGROVE, A., 1995. Energy levels of Zinc, Zn I through Zn XXX. J. Phys. Chem. Ref. Data. vol. 24, no. 6, pp. 1803–1872. DOI: https://doi.org/10.1063/1.55597111. KUTSENKO, A. S., MACADAM, K. B., DYUBKO, S. F. and POGREBNYAK, N.L., 2015. Millimeter-wave spectroscopy of Zn I in 1D2, 1F3 and 1G4 Rydberg states. J. Phys. B: At. Mol. Opt. Phys. vol. 48, no. 24, id. 245005. DOI: https://doi.org/10.1088/0953-4075/48/24/24500512. POGREBNYAK, N. L., DYUBKO, S. F., ALEKSEEV, E. A., PEREPECHAI, M. P., TKACHEV, A. I. and VLASENKO, S. A., 2019. Laser-microwave spectrometer and spectroscopy of zinc atom in triplet rydberg states. Radio Phys. Radio Astron. vol. 24, no. 4. pp. 272–284. (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.04.27213. GALLAGHER, T. F., 1994. Rydberg Atoms. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO978051152453014. CIVIŠ, S., FERUS, M., CHERNOV, V. E., ZANOZINA, E. M. and JUHA, L., 2014. Zn I spectra in the 1300-6500 cm-1 range. J. Quant. Spectrosc. Radiat. Transf. vol. 134, pp. 64–73. DOI: https://doi.org/10.1016/j.jqsrt.2013.10.01715. GULLBERG, D. and LITZÉN, U., 2000. Accurately Measured Wavelengths of Zn I and Zn II Lines of Astrophysical Interest. Phys. Scr. vol. 61, no. 6, pp. 652–656. DOI: https://doi.org/10.1238/Physica.Regular.061a0065216. MUNTENBRUCH, H., 1960. Die vervollständigung des termschemas von Zn I mit hilfe einer hohlkathodenentladung. Spectrochimica Acta. vol. 16, is. 9, pp. 1040–1053, E5-E6. DOI: https://doi.org/10.1016/0371-1951(60)80144-017. KOMPITSAS, M., BAHARIS, C. and PAN, Z., 1994. Rydberg states of zinc and measurement of the dipole polarizability of the Zn+ ion. J. Opt. Soc. Am. B. vol. 11, no. 5, pp. 697–702. DOI: https://doi.org/10.1364/JOSAB.11.00069718. DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and MACADAM, K. B., 2003. Microwave spectroscopy of Al I Rydberg states: F terms. J. Phys. B: At. Mol. Opt. Phys. vol. 36, no. 18, pp. 3797–3804. DOI: https://doi.org/10.1088/0953-4075/36/18/30819. SHAH, M., AISHA, G., SHAHZADA, S., HAQ, S. U. and NADEEM, A., 2018. Step-Wise Laser Excitation of the 4snf 3F Rydberg States of Neutral Zinc. Spectrosc. Lett. vol. 51, is. 1, pp. 1–6. DOI: https://doi.org/10.1080/00387010.2017.1357636 УДК 539.1.078; 539.184Предмет і мета роботи: Об’єктом досліджень є атоми цинку в триплетних передіонізаційних – рідбергівських станах. Рівні енергій атомів, що мають два електрони поза замкнутою оболонкою, вивчались переважно методами оптичної спектроскопії. Проте власне застосування мікрохвильової спектроскопії для вимірювання частоти переходів між двома рідбергівськими станами дозволяє підвищити точність вимірювань на два і більше порядків.Методи і методологія: Для збудження атомів цинку в триплетні рідбергівські стани з наперед заданим набором квантових чисел використовується лінійка із трьох лазерів на барвниках. Випромінювання перших двох перетворюється в другу гармоніку в нелінійних кристалах. Лазери на барвниках збуджуються випромінюванням другої гармоніки одного YAG: Nd3+ лазера. Всі три випромінювання зводяться в зону взаємодії з лазерними та мікрохвильовим випромінюваннями, яка знаходиться між пластинами іонізаційного осередку, де створюється імпульсне електричне поле. Реєстрація збуджених рідбергівських атомів виконується методом польової іонізації. Пучок нейтральних атомів створюється ефузійною коміркою в умовах вакууму, залишковий тиск не перевищує 10-5 мм рт. ст. Імпульсне електричне поле визначеної напруженості приводить до іонізації збуджених мікрохвильовим випромінюванням атомів та прискорення електронів, що з’явились, у напрямку вторинно-електронного помножувача, але є недостатнім для іонізації атомів, що збуджені лише лазерними випромінюваннями і є початковими для взаємодії з мікрохвилями. Скануючи частоту мікрохвильового випромінювання з заданим кроком і вимірюючи інтенсивність сигналу вторинно-електронного помножувача можна отримати спектр збудження атомів, що досліджуються.Результати: За допомогою створеного лазерно-мікрохвильового спектрометра виміряно частоти переходів F→D, F→F та F→G між триплетними рідбергівськими станами атомів цинку. З виконаного аналізу частот отримано константи розкладання квантового дефекту за формулою Рітца для D, F та G станів атомів цинку.Висновок: Виміряно частоти переходів F→D, F→F та F→G між триплетними рідбергівськими станами атомів цинку, що дозволило отримати константи розкладання квантового дефекту за формулою Рітца для D, F та G станів атомів цинку, що зі свого боку створює можливість розрахувати енергії цих термів і частоти переходів щонайменше на два порядки точніше ніж у разі вимірювань методами оптичної спектроскопії.Ключові слова: атом цинку, триплетні стани атомів, рідбергівські стани, лазерне збудження, мікрохвильове випромінюванняСтаття надійшла до редакції 17.06.2021Radio phys. radio astron. 2021, 26(3): 256-269СПИСОК ЛІТЕРАТУРИ1. Biemont E. and Godefroid M. A Reassessment of the Zinc Solar Abundance. Astron. Astrophys. 1980. Vol. 84, No. 3. P. 361–363.2. Sneden C., Gratton R. G., and Crocker D. A. Trends in copper and zinc abundances for disk and halo stars. Astron. Astrophys. 1991. Vol. 246, No. 2. P. 354–367.3. Brown C. M. and Tilford S. G. Absorption spectra of Zn i and Cd i in the 1300–1750 Å region. J. Opt. Soc. Am. 1975. Vol. 65, Is. 12. P. 1404–1409. DOI: 10.1364/JOSA.65.0014044. Gullberg D. and Litzen U. Accurately measured wavelengths of Zn I and Zn II Lines of Astrophysical interest. Phys. Scr. 2000. Vol. 61, No. 6. P. 652–656.5. COMMENTS.UA. Які захворювання викликає дефіцит цинку в організмі. URL: https://health.comments.ua/ua/news/vitamins-and-nutritional-supplements/yaki-zahvoryuvannya-viklikae-deficit-cinku-v-organizmi-676087.html (дата звернення 9.06.2021)6. NIST. Atomic Spectra Database. URL: http://physics.nist.gov/asd (viewed 9.06.2021).7. Eshkobilov N. B. Laser spectroscopy of the Rydberg states of atoms group IIB (Zn, Cd, Hg). J. Appl. Spectrosc. 2000. Vol. 67, No. 2. P. 343–345. DOI: 10.1007/bf026818568. Nadeem A., Nawaz M., Bhatti S. A., and Baig M. A. Multi-step laser excitation of the highly excited states of zinc. Opt. Commun. 2006. Vol. 259, Is. 2. P. 834–839. DOI: 10.1016/j.optcom.2005.08.0759. Nawaz M., Nadeem A., Bhatti S. A., and Baig M. A. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc. J. Phys. B: At. Mol. Opt. Phys. 2006. Vol 39, No. 4. P. 871–882.10. Sugar J. and Musgrove A. Energy levels of Zinc, Zn I through Zn XXX. J. Phys. Chem. Ref. Data. 1995. Vol. 24, No. 6. P. 1803–1872. DOI: 10.1063/1.55597111. Kutsenko A. S., MacAdam K. B., Dyubko S. F., and Pogrebnyak N.L. Millimeter-wave spectroscopy of Zn I in 1D2, 1F3 and 1G4 Rydberg states. J. Phys. B: At. Mol. Opt. Phys. 2015. Vol. 48, No. 24. id. 245005. DOI: 10.1088/0953-4075/48/24/24500512. Погребняк М. Л., Дюбко С. П., Алєксеєв Є. А., Перепечай М. П., Ткачев А. І., Власенко С. О. Лазерно-мікрохвильовий спектрометр та спектроскопія атомів цинку в триплетних рідбергівських станах. Радіофізика і радіоастрономія. 2019. Т. 24, № 4. С. 272–284. DOI: 10.15407/rpra24.04.27213. Gallagher T. F. Rydberg Atoms. New York: Cambridge University Press, 1994.14. Civiš S., Ferus M., Chernov V. E., Zanozina E. M., and Juha L. Zn I spectra in the 1300-6500 cm-1 range. J. Quant. Spectrosc. Radiat. Transf. 2014. Vol. 134. P. 64–73. DOI: 10.1016/j.jqsrt.2013.10.01715. Gullberg D. and Litzén U. Accurately Measured Wavelengths of Z I and Zn II Lines of Astrophysical Interest. Phys. Scr. 2000. Vol. 61, No. 6. P. 652–656.16. Muntenbruch H. Die vervollständigung des termschemas von Zn I mit hilfe einer hohlkathodenentladung. Spectrochimica Acta. 1960. Vol. 16, Is. 9. P. 1040–1053, E5-E6. DOI: 10.1016/0371-1951(60)80144-017. Kompitsas M., Baharis C., and Pan Z. Rydberg states of zinc and measurement of the dipole polarizability of the Zn+ ion. J. Opt. Soc. Am. B. 1994. Vol. 11, No. 5. P. 697–702. DOI: 10.1364/JOSAB.11.00069718. Dyubko S. F., Efremov V. A., Gerasimov V. G., and MacAdam K. B. Microwave spectroscopy of Al I Rydberg states: F terms. J. Phys. B: At. Mol. Opt. Phys. 2003. Vol. 36, No. 18. P. 3797–3804. DOI: 10.1088/0953-4075/36/18/30819. Shah M., Aisha G., Shahzada S., Haq S. U., and Nadeem A. Step-Wise Laser Excitation of the 4snf 3F Rydberg States of Neutral Zinc. Spectrosc. Lett. 2018. Vol. 51, Is. 1. P. 1–6. DOI: 10.1080/00387010.2017.1357636 Видавничий дім «Академперіодика» 2021-09-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1365 10.15407/rpra26.03.256 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 3 (2021); 256 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 3 (2021); 256 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 3 (2021); 256 2415-7007 1027-9636 10.15407/rpra26.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1365/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY |