AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE
Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of man...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2021
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1366 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1366 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2021-09-22T11:57:11Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
|
| spellingShingle |
Mayboroda, D. V. Pogarsky, S. O. AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| topic_facet |
inverted dielectric waveguide periodic sequence voltage standing-wave ratio (VSWR) attenuation reflectometer method mobile probe method directivity pattern |
| format |
Article |
| author |
Mayboroda, D. V. Pogarsky, S. O. |
| author_facet |
Mayboroda, D. V. Pogarsky, S. O. |
| author_sort |
Mayboroda, D. V. |
| title |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| title_short |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| title_full |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| title_fullStr |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| title_full_unstemmed |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE |
| title_sort |
antenna based on a hybrid metal–dielectric structure |
| title_alt |
AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE АНТЕНА НА ОСНОВІ ГІБРИДНОЇ МЕТАЛЕВО-ДІЕЛЕКТРИЧНОЇ СТРУКТУРИ |
| description |
Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of manufacturing the dielectric waveguides and functional units using them, the high degree of their integration with active elements, the use in their manufacture of different dielectrics and polymers with a wide range of material constants and a variety of mechanical properties (in particular, some materials have a significant flexibility).After making a series of physical experiments we have found the possibility of implementing the frequency selection and radiation into free space of electromagnetic waves by a hybrid metal-dielectric structure.Design/methodology/approach: The studied electrodynamic structure belongs to the class of hybrid metal-dielectric structures. It includes a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metallized coating on one of the faces placed outwards. The structure efficiency was estimated by the voltage standing-wave ratio (VSWR) values and power attenuation in the duct. The measurements were made with the reflectometer method. To estimate the degree of electromagnetic field concentration near the rod inhomogeneities in the near zone, the mobile probe method was used. The field structures were visualized with the method of isolines.Findings: The results of a series of experimental investigations showed the possibility of matching the structure with the external waveguides in the frequency range of 26.5-32.5 GHz with the voltage standing-wave ratio (VSWR) less than 1.8. The frequency dependence of attenuation is oscillatory with clearly expressed frequency ranges with small and large attenuation values. Moreover, the dependence is almost periodic, which is typical of periodic structures. The frequency response slope in the transition zones can be quite high and reach values of 41.26 dB/GHz. The degree of concentration of the electric field near the waveguide dielectric rod and the degree of excitation of the dielectric inhomogeneities was found by directly measured electric field strength in the near zone. Measurements of energy characteristics made under the short-circuit conditions for the main guide and in the mode of matched load of the main guide showed both the ability to control the polarization characteristics and the ability to change the appearance of the pattern and its orientation in space.Conclusions: It has been experimentally proven that a hybrid metal-dielectric structure, being a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metalized coating on one of the faces placed outwards, can be effectively integrated into a standard transmission line. It is found that this structure can be matched with the external circuits in a fairly wide frequency range. It is also found that in different frequency ranges this hybrid metal-dielectric structure shows the possibility of both efficient frequency selection and radiation in free space. Antenna measurements have shown the beam pattern shape controllability.Key words: inverted dielectric waveguide, periodic sequence, voltage standing-wave ratio (VSWR), attenuation, reflectometer method, mobile probe method, directivity patternManuscript submitted 28.04.2021Radio phys. radio astron. 2021, 26(3): 270-277REFERENCES1. YONEYAMA, T. and NISHIDA, S., 1983. Nonradiative dielectric waveguide circuit components. Int. J. Infrared Millim. Waves. vol. 4, is. 3, pp. 439–449. DOI: https://doi.org/10.1007/BF010091722. CRAMPAGNE, R., PADELLEC, L. and SARREME[1]JEAN, A., 1980. Leaky Wave Antenna Using an Inverted Strip Dielectric Waveguide. In: Proceedings of the 10th European Microwave Conference. September 8-12, 1980. Warszawa, Poland, pp. 474–479. DOI: https://doi.org/10.1109/EUMA.1980.3329083. LI, Z-W. and MENZEL, W., 1992. A 61 GHZ doppler radar using inverted strip dielectric waveguide. In: 1992 IEEE MTT-S International Microwave Symposium Digest. June 1-5, 1992. Albuquerque, NM, USA, vol. 2, pp. 629–632. DOI: https://doi.org/10.1109/MWSYM.1992.1880614. MAYBORODA, D. V., POGARSKY, S. A. and SAPRY[1]KIN, I. I., 2012. The Radiating Unit Based on Hybrid Metal[1]Dielectric Structure with Bounded Sequence of Transverse Slots. Int. J. Electromagn. Appl. vol. 2, is. 6, pp. 159–162. DOI: https://doi.org/10.5923/j.ijea.20120206.045. MAYBORODA, D. V., POGARSKY, S. A., SAPRYKIN, I. I. and PSHENICHNAYA, S. V., 2010. The radiator of Ku-band based on inverted dielectric waveguide. In: 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals. September 6-10, 2010. Sevastopol, Ukraine, pp. 215–217. DOI: https://doi.org/10.1109/UWBUSIS.2010.56091356. RAWAT, B., 1983. Design of millimetre wave compo[1]nents using inverted strip dielectric waveguides. Int. J. Electron. vol. 54, is. 1, pp. 147–154. DOI: https://doi.org/10.1080/002072183089387037. ITOH, T., 1976. Inverted Strip Dielectric Waveguide for Millimetre-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. MTT-24, is. 11, pp. 821–827. DOI: https://doi.org/10.1109/TMTT.1976.11289678. RAWAT, B. and DALMIA, M., 1984. Computer aided design of inverted strip dielectric waveguide millimeter wave ring-resonator and coupler. Int. J. Infrared Millim. Waves. vol. 5, is. 12, pp. 1527–1542. DOI: https://doi.org/10.1007/BF010405049. KUROKI, F. and YONEYAMA, T., 1990. Nonradiative dielectric waveguide circuit components using beam-lead diodes. Electron. Commun. Jpn. Part II. vol. 73, is. 9, pp. 35–41. DOI: https://doi.org/10.1002/ecjb.442073090510. YONEYAMA, T. and NISHIDA, S., 1981. Nonradiative Dielectric Waveguide for Millimeter-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. 29, is. 11, pp. 1188–1192. DOI: https://doi.org/10.1109/TMTT.1981.113052911. SHINOHARA, S. and YONEYAMA, T., 1991. Some interesting transmission characters of nonradiative dielectric waveguides using high-permittivity material. Electron. Commun. Jpn. Part 2. vol. 74, is. 7, pp. 20–29. DOI: https://doi.org/10.1002/ecjb.442074070312. PONCHAK, G. E. and KATEHI, L. P. B., 1996. Design and analysis of transitions from rectangular waveguide to layered dielectric waveguide. IEEE Trans. Microwave Theory Tech. vol. 44, is. 7, pp. 1032–1040. DOI: https://doi.org/10.1109/22.50863513. BHOOSHAN, S. and MITTRA, R., 1981. On the Design of Transitions Between a Metal and Inverted Strip Dielectric Waveguide for Millimeter Waves. IEEE Trans. Microwave Theory Tech. vol. MTT-29, is. 3, pp. 263–265. DOI: https://doi.org/10.1109/TMTT.1981.113033914. OLINER, A. A., PENG, S.-T., HSU, T.-I. and SANCHEZ, A., 1981. Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part II - New Physical Effects. IEEE Trans. Microwave Theory Tech. vol. 29, is. 9, pp. 855–869. DOI: https://doi.org/10.1109/TMTT.1981.1130466 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2021 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1366 |
| work_keys_str_mv |
AT mayborodadv anantennabasedonahybridmetaldielectricstructure AT pogarskyso anantennabasedonahybridmetaldielectricstructure AT mayborodadv antenanaosnovígíbridnoímetalevodíelektričnoístrukturi AT pogarskyso antenanaosnovígíbridnoímetalevodíelektričnoístrukturi AT mayborodadv antennabasedonahybridmetaldielectricstructure AT pogarskyso antennabasedonahybridmetaldielectricstructure |
| first_indexed |
2025-12-02T15:33:24Z |
| last_indexed |
2025-12-02T15:33:24Z |
| _version_ |
1850836448685588480 |
| spelling |
rpra-journalorgua-article-13662021-09-22T11:57:11Z AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE AN ANTENNA BASED ON A HYBRID METAL–DIELECTRIC STRUCTURE АНТЕНА НА ОСНОВІ ГІБРИДНОЇ МЕТАЛЕВО-ДІЕЛЕКТРИЧНОЇ СТРУКТУРИ Mayboroda, D. V. Pogarsky, S. O. inverted dielectric waveguide; periodic sequence; voltage standing-wave ratio (VSWR); attenuation; reflectometer method; mobile probe method; directivity pattern Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of manufacturing the dielectric waveguides and functional units using them, the high degree of their integration with active elements, the use in their manufacture of different dielectrics and polymers with a wide range of material constants and a variety of mechanical properties (in particular, some materials have a significant flexibility).After making a series of physical experiments we have found the possibility of implementing the frequency selection and radiation into free space of electromagnetic waves by a hybrid metal-dielectric structure.Design/methodology/approach: The studied electrodynamic structure belongs to the class of hybrid metal-dielectric structures. It includes a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metallized coating on one of the faces placed outwards. The structure efficiency was estimated by the voltage standing-wave ratio (VSWR) values and power attenuation in the duct. The measurements were made with the reflectometer method. To estimate the degree of electromagnetic field concentration near the rod inhomogeneities in the near zone, the mobile probe method was used. The field structures were visualized with the method of isolines.Findings: The results of a series of experimental investigations showed the possibility of matching the structure with the external waveguides in the frequency range of 26.5-32.5 GHz with the voltage standing-wave ratio (VSWR) less than 1.8. The frequency dependence of attenuation is oscillatory with clearly expressed frequency ranges with small and large attenuation values. Moreover, the dependence is almost periodic, which is typical of periodic structures. The frequency response slope in the transition zones can be quite high and reach values of 41.26 dB/GHz. The degree of concentration of the electric field near the waveguide dielectric rod and the degree of excitation of the dielectric inhomogeneities was found by directly measured electric field strength in the near zone. Measurements of energy characteristics made under the short-circuit conditions for the main guide and in the mode of matched load of the main guide showed both the ability to control the polarization characteristics and the ability to change the appearance of the pattern and its orientation in space.Conclusions: It has been experimentally proven that a hybrid metal-dielectric structure, being a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metalized coating on one of the faces placed outwards, can be effectively integrated into a standard transmission line. It is found that this structure can be matched with the external circuits in a fairly wide frequency range. It is also found that in different frequency ranges this hybrid metal-dielectric structure shows the possibility of both efficient frequency selection and radiation in free space. Antenna measurements have shown the beam pattern shape controllability.Key words: inverted dielectric waveguide, periodic sequence, voltage standing-wave ratio (VSWR), attenuation, reflectometer method, mobile probe method, directivity patternManuscript submitted 28.04.2021Radio phys. radio astron. 2021, 26(3): 270-277REFERENCES1. YONEYAMA, T. and NISHIDA, S., 1983. Nonradiative dielectric waveguide circuit components. Int. J. Infrared Millim. Waves. vol. 4, is. 3, pp. 439–449. DOI: https://doi.org/10.1007/BF010091722. CRAMPAGNE, R., PADELLEC, L. and SARREME[1]JEAN, A., 1980. Leaky Wave Antenna Using an Inverted Strip Dielectric Waveguide. In: Proceedings of the 10th European Microwave Conference. September 8-12, 1980. Warszawa, Poland, pp. 474–479. DOI: https://doi.org/10.1109/EUMA.1980.3329083. LI, Z-W. and MENZEL, W., 1992. A 61 GHZ doppler radar using inverted strip dielectric waveguide. In: 1992 IEEE MTT-S International Microwave Symposium Digest. June 1-5, 1992. Albuquerque, NM, USA, vol. 2, pp. 629–632. DOI: https://doi.org/10.1109/MWSYM.1992.1880614. MAYBORODA, D. V., POGARSKY, S. A. and SAPRY[1]KIN, I. I., 2012. The Radiating Unit Based on Hybrid Metal[1]Dielectric Structure with Bounded Sequence of Transverse Slots. Int. J. Electromagn. Appl. vol. 2, is. 6, pp. 159–162. DOI: https://doi.org/10.5923/j.ijea.20120206.045. MAYBORODA, D. V., POGARSKY, S. A., SAPRYKIN, I. I. and PSHENICHNAYA, S. V., 2010. The radiator of Ku-band based on inverted dielectric waveguide. In: 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals. September 6-10, 2010. Sevastopol, Ukraine, pp. 215–217. DOI: https://doi.org/10.1109/UWBUSIS.2010.56091356. RAWAT, B., 1983. Design of millimetre wave compo[1]nents using inverted strip dielectric waveguides. Int. J. Electron. vol. 54, is. 1, pp. 147–154. DOI: https://doi.org/10.1080/002072183089387037. ITOH, T., 1976. Inverted Strip Dielectric Waveguide for Millimetre-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. MTT-24, is. 11, pp. 821–827. DOI: https://doi.org/10.1109/TMTT.1976.11289678. RAWAT, B. and DALMIA, M., 1984. Computer aided design of inverted strip dielectric waveguide millimeter wave ring-resonator and coupler. Int. J. Infrared Millim. Waves. vol. 5, is. 12, pp. 1527–1542. DOI: https://doi.org/10.1007/BF010405049. KUROKI, F. and YONEYAMA, T., 1990. Nonradiative dielectric waveguide circuit components using beam-lead diodes. Electron. Commun. Jpn. Part II. vol. 73, is. 9, pp. 35–41. DOI: https://doi.org/10.1002/ecjb.442073090510. YONEYAMA, T. and NISHIDA, S., 1981. Nonradiative Dielectric Waveguide for Millimeter-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. 29, is. 11, pp. 1188–1192. DOI: https://doi.org/10.1109/TMTT.1981.113052911. SHINOHARA, S. and YONEYAMA, T., 1991. Some interesting transmission characters of nonradiative dielectric waveguides using high-permittivity material. Electron. Commun. Jpn. Part 2. vol. 74, is. 7, pp. 20–29. DOI: https://doi.org/10.1002/ecjb.442074070312. PONCHAK, G. E. and KATEHI, L. P. B., 1996. Design and analysis of transitions from rectangular waveguide to layered dielectric waveguide. IEEE Trans. Microwave Theory Tech. vol. 44, is. 7, pp. 1032–1040. DOI: https://doi.org/10.1109/22.50863513. BHOOSHAN, S. and MITTRA, R., 1981. On the Design of Transitions Between a Metal and Inverted Strip Dielectric Waveguide for Millimeter Waves. IEEE Trans. Microwave Theory Tech. vol. MTT-29, is. 3, pp. 263–265. DOI: https://doi.org/10.1109/TMTT.1981.113033914. OLINER, A. A., PENG, S.-T., HSU, T.-I. and SANCHEZ, A., 1981. Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part II - New Physical Effects. IEEE Trans. Microwave Theory Tech. vol. 29, is. 9, pp. 855–869. DOI: https://doi.org/10.1109/TMTT.1981.1130466 Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of manufacturing the dielectric waveguides and functional units using them, the high degree of their integration with active elements, the use in their manufacture of different dielectrics and polymers with a wide range of material constants and a variety of mechanical properties (in particular, some materials have a significant flexibility).After making a series of physical experiments we have found the possibility of implementing the frequency selection and radiation into free space of electromagnetic waves by a hybrid metal-dielectric structure.Design/methodology/approach: The studied electrodynamic structure belongs to the class of hybrid metal-dielectric structures. It includes a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metallized coating on one of the faces placed outwards. The structure efficiency was estimated by the voltage standing-wave ratio (VSWR) values and power attenuation in the duct. The measurements were made with the reflectometer method. To estimate the degree of electromagnetic field concentration near the rod inhomogeneities in the near zone, the mobile probe method was used. The field structures were visualized with the method of isolines.Findings: The results of a series of experimental investigations showed the possibility of matching the structure with the external waveguides in the frequency range of 26.5-32.5 GHz with the voltage standing-wave ratio (VSWR) less than 1.8. The frequency dependence of attenuation is oscillatory with clearly expressed frequency ranges with small and large attenuation values. Moreover, the dependence is almost periodic, which is typical of periodic structures. The frequency response slope in the transition zones can be quite high and reach values of 41.26 dB/GHz. The degree of concentration of the electric field near the waveguide dielectric rod and the degree of excitation of the dielectric inhomogeneities was found by directly measured electric field strength in the near zone. Measurements of energy characteristics made under the short-circuit conditions for the main guide and in the mode of matched load of the main guide showed both the ability to control the polarization characteristics and the ability to change the appearance of the pattern and its orientation in space.Conclusions: It has been experimentally proven that a hybrid metal-dielectric structure, being a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metalized coating on one of the faces placed outwards, can be effectively integrated into a standard transmission line. It is found that this structure can be matched with the external circuits in a fairly wide frequency range. It is also found that in different frequency ranges this hybrid metal-dielectric structure shows the possibility of both efficient frequency selection and radiation in free space. Antenna measurements have shown the beam pattern shape controllability.Key words: inverted dielectric waveguide, periodic sequence, voltage standing-wave ratio (VSWR), attenuation, reflectometer method, mobile probe method, directivity patternManuscript submitted 28.04.2021Radio phys. radio astron. 2021, 26(3): 270-277REFERENCES 1. YONEYAMA, T. and NISHIDA, S., 1983. Nonradiative dielectric waveguide circuit components. Int. J. Infrared Millim. Waves. vol. 4, is. 3, pp. 439–449. DOI: https://doi.org/10.1007/BF010091722. CRAMPAGNE, R., PADELLEC, L. and SARREME[1]JEAN, A., 1980. Leaky Wave Antenna Using an Inverted Strip Dielectric Waveguide. In: Proceedings of the 10th European Microwave Conference. September 8-12, 1980. Warszawa, Poland, pp. 474–479. DOI: https://doi.org/10.1109/EUMA.1980.3329083. LI, Z-W. and MENZEL, W., 1992. A 61 GHZ doppler radar using inverted strip dielectric waveguide. In: 1992 IEEE MTT-S International Microwave Symposium Digest. June 1-5, 1992. Albuquerque, NM, USA, vol. 2, pp. 629–632. DOI: https://doi.org/10.1109/MWSYM.1992.1880614. MAYBORODA, D. V., POGARSKY, S. A. and SAPRY[1]KIN, I. I., 2012. The Radiating Unit Based on Hybrid Metal[1]Dielectric Structure with Bounded Sequence of Transverse Slots. Int. J. Electromagn. Appl. vol. 2, is. 6, pp. 159–162. DOI: https://doi.org/10.5923/j.ijea.20120206.045. MAYBORODA, D. V., POGARSKY, S. A., SAPRYKIN, I. I. and PSHENICHNAYA, S. V., 2010. The radiator of Ku-band based on inverted dielectric waveguide. In: 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals. September 6-10, 2010. Sevastopol, Ukraine, pp. 215–217. DOI: https://doi.org/10.1109/UWBUSIS.2010.56091356. RAWAT, B., 1983. Design of millimetre wave compo[1]nents using inverted strip dielectric waveguides. Int. J. Electron. vol. 54, is. 1, pp. 147–154. DOI: https://doi.org/10.1080/002072183089387037. ITOH, T., 1976. Inverted Strip Dielectric Waveguide for Millimetre-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. MTT-24, is. 11, pp. 821–827. DOI: https://doi.org/10.1109/TMTT.1976.11289678. RAWAT, B. and DALMIA, M., 1984. Computer aided design of inverted strip dielectric waveguide millimeter wave ring-resonator and coupler. Int. J. Infrared Millim. Waves. vol. 5, is. 12, pp. 1527–1542. DOI: https://doi.org/10.1007/BF010405049. KUROKI, F. and YONEYAMA, T., 1990. Nonradiative dielectric waveguide circuit components using beam-lead diodes. Electron. Commun. Jpn. Part II. vol. 73, is. 9, pp. 35–41. DOI: https://doi.org/10.1002/ecjb.442073090510. YONEYAMA, T. and NISHIDA, S., 1981. Nonradiative Dielectric Waveguide for Millimeter-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. vol. 29, is. 11, pp. 1188–1192. DOI: https://doi.org/10.1109/TMTT.1981.113052911. SHINOHARA, S. and YONEYAMA, T., 1991. Some interesting transmission characters of nonradiative dielectric waveguides using high-permittivity material. Electron. Commun. Jpn. Part 2. vol. 74, is. 7, pp. 20–29. DOI: https://doi.org/10.1002/ecjb.442074070312. PONCHAK, G. E. and KATEHI, L. P. B., 1996. Design and analysis of transitions from rectangular waveguide to layered dielectric waveguide. IEEE Trans. Microwave Theory Tech. vol. 44, is. 7, pp. 1032–1040. DOI: https://doi.org/10.1109/22.50863513. BHOOSHAN, S. and MITTRA, R., 1981. On the Design of Transitions Between a Metal and Inverted Strip Dielectric Waveguide for Millimeter Waves. IEEE Trans. Microwave Theory Tech. vol. MTT-29, is. 3, pp. 263–265. DOI: https://doi.org/10.1109/TMTT.1981.113033914. OLINER, A. A., PENG, S.-T., HSU, T.-I. and SANCHEZ, A., 1981. Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part II - New Physical Effects. IEEE Trans. Microwave Theory Tech. vol. 29, is. 9, pp. 855–869. DOI: https://doi.org/10.1109/TMTT.1981.1130466 Предмет і мета роботи: Наразі у міліметровому діапазоні частот діелектричні хвилеводи різних модифікацій мають певні переваги перед стандартними металевими хвилеводами в першу чергу завдяки можливості створювати функціональні вузли на їх основі. Це обумовлено відносною простотою та незначною вартістю виготовлення діелектричних хвилеводів і функціональних вузлів на їх основі, високим ступенем їх інтеграції з активними елементами, застосуванням у їх виготовленні різних діелектриків та полімерів, що мають широкий діапазон матеріальних констант і різноманітні механічні властивості (зокрема, деякі діелектричні матеріали мають значну гнучкість).За допомогою серії фізичних експериментів встановлено можливість реалізації частотної селекції і випромінювання у вільний простір електромагнітних хвиль гібридною металево-діелектричною структурою.Методи і методологія: Досліджувана електродинамічна структура відноситься до класу гібридних металево-діелектричних структур. Її основу становить модифікований інвертований діелектричний хвилевід з періодично розміщеними на діелектричній пластині п’ятнадцятьма діелектричними стрижнями, у яких металізованою є звернена назовні грань. Ефективність роботи структури оцінювалася за значеннями коефіцієнта стоячої хвилі за напругою та внесеного загасання в тракт. Вимірювання виконувалися за допомогою метода рефлектометра. Методом рухливого зонда в ближній зоні був оцінений ступінь концентрації електромагнітного поля поблизу стрижневих неоднорідностей. Візуалізація полів здійснювалася за допомогою методу ізоліній.Результати: На підставі серії експериментальних досліджень показано можливість узгодження структури із зовнішніми хвилевідними трактами у діапазоні частот 26.5÷32.5 ГГц з коефіцієнтом стоячої хвилі за напругою менше 1.8. Частотна залежність загасання має коливальний характер з чітко вираженими частотними областями з малими та великими значеннями загасання. Більше того, залежність носить практично періодичний характер, що характерно для періодичних структур. Крутизна амплітудно-частотної характеристики в перехідних зонах може бути досить високою і досягати значення 41.26 дБ/ГГц. Шляхом прямого вимірювання напруженості електричного поля в ближній зоні встановлено ступінь концентрації електричного поля поблизу хвилеведучого діелектричного стрижня і ступінь збудження діелектричних накладок. Вимірювання енергетичних характеристик структури, виконані в режимі короткого замикання основного тракту і в режимі узгодженого навантаження основного тракту, показали як можливість управління поляризаційними характеристиками, так і можливість зміни вигляду діаграми спрямованості і її орієнтації в просторі.Висновки: Експериментально доведено, що гібридна металево-діелектрична структура, яка являє собою модифікований інвертований діелектричний хвилевід з періодично розміщеними на діелектричній пластині п’ятнадцятьма діелектричними стрижнями, у яких металізованою є звернена назовні грань, може бути ефективно інтегрована в стандартну лінію передачі. Встановлено, що ця структура може бути узгоджена з зовнішніми колами в досить широкій смузі частот. Встановлено, що в різних частотних діапазонах ця гібридна металево-діелектрична структура демонструє можливість ефективної частотної селекції і випромінювання у вільний простір. Антенні вимірювання показали можливість контролювати форму діаграми спрямованості.Ключові слова: інвертований діелектричний хвилевід, періодична послідовність, коефіцієнт стоячої хвилі за напругою (КСХН), загасання, метод рефлектометра, метод рухливого зонда, діаграма спрямованостіСтаття надійшла до редакції 28.04.2021Radio phys. radio astron. 2021, 26(3): 270-277СПИСОК ЛІТЕРАТУРИ1. Yoneyama T. and Nishida S. Nonradiative dielectric wave[1]guide circuit components. Int. J. Infrared Millim. Waves. 1983. Vol. 4, Is. 3. P. 439–449. DOI: 10.1007/BF010091722. Crampagne R., Padellec L., and Sarremejean A. Leaky Wave Antenna Using an Inverted Strip Dielectric Waveguide. In: Proceedings of the 10th European Microwave Conference. (September 8-12, 1980. Warszawa, Poland). 1980. P. 474–479. DOI: 10.1109/EUMA.1980.3329083. Li Z-W. and Menzel W. A 61 GHZ doppler radar using inverted strip dielectric waveguide. In: 1992 IEEE MTT-S International Microwave Symposium Digest. (June 1-5, 1992. Albuquerque, NM, USA). 1992. Vol. 2. P. 629–632. DOI: 10.1109/MWSYM.1992.1880614. Mayboroda D. V., Pogarsky S. A., and Saprykin I. I. The Radiating Unit Based on Hybrid Metal-Dielectric Structure with Bounded Sequence of Transverse Slots. Int. J. Electromagn. Appl. 2012. Vol. 2, Is. 6. P. 159–162. DOI: 10.5923/j.ijea.20120206.045. Mayboroda D. V., Pogarsky S. A., Saprykin I. I., and Pshenichnaya S. V. The radiator of Ku-band based on inverted dielectric waveguide. In: 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals. (September 6-10, 2010. Sevastopol, Ukraine). 2010. P. 215–217. DOI: 10.1109/UWBUSIS.2010.56091356. Rawat B. Design of millimetre wave components using inverted strip dielectric waveguides. Int. J. Electron. 1983. Vol. 54, Is. 1. P. 147–154. DOI: 10.1080/002072183089387037. Itoh T. Inverted Strip Dielectric Waveguide for Millimet[1]re-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. 1976. Vol. MTT-24, Is. 11. P. 821–827. DOI: 10.1109/TMTT.1976.11289678. Rawat B. and Dalmia M. Computer aided design of inverted strip dielectric waveguide millimeter wave ring-resonator and coupler. Int. J. Infrared Millim. Waves. 1984. Vol. 5, Is. 12. P. 1527–1542. DOI: 10.1007/BF010405049. Kuroki F. and Yoneyama T. Nonradiative dielectric wave[1]guide circuit components using beam-lead diodes. Electron. Commun. Jpn. Part II. 1990. Vol. 73, Is. 9. P. 35–41. DOI: 10.1002/ecjb.442073090510. Yoneyama T. and Nishida S. Nonradiative Dielectric Waveguide for Millimeter-Wave Integrated Circuits. IEEE Trans. Microwave Theory Tech. 1981. Vol. 29, Is. 11. P. 1188–1192. DOI: 10.1109/TMTT.1981.113052911. Shinohara S. and Yoneyama T. Some interesting transmission characters of nonradiative dielectric waveguides using high-permittivity material. Electron. Commun. Jpn. Part 2. 1991. Vol. 74, Is. 7. P. 20–29. DOI: 10.1002/ecjb.442074070312. Ponchak G. E. and Katehi L. P. B. Design and analysis of transitions from rectangular waveguide to layered dielectric waveguide. IEEE Trans. Microwave Theory Tech. 1996. Vol. 44, Is. 7. P. 1032–1040. DOI: 10.1109/22.50863513. Bhooshan S. and Mittra R. On the Design of Transitions Between a Metal and Inverted Strip Dielectric Wave[1]guide for Millimeter Waves. IEEE Trans. Microwave Theory Tech. 1981. Vol. MTT-29, Is. 3. P. 263–265. DOI: 10.1109/ TMTT.1981.113033914. Oliner A. A., Peng S.-T., Hsu T.-I., and Sanchez A. Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part II – New Physical Effects. IEEE Trans. Microwave Theory Tech. 1981. Vol. 29, Is. 9. P. 855–869. DOI: 10.1109/TMTT.1981.1130466 Видавничий дім «Академперіодика» 2021-09-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1366 10.15407/rpra26.03.270 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 3 (2021); 270 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 3 (2021); 270 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 3 (2021); 270 2415-7007 1027-9636 10.15407/rpra26.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1366/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY |