FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021

Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems...

Full description

Saved in:
Bibliographic Details
Date:2021
Main Authors: Chernogor, L. F., Garmash, K. P., Zhdanko, Y. H., Leus, S. G., Luo, Y.
Format: Article
Language:Ukrainian
Published: Видавничий дім «Академперіодика» 2021
Subjects:
Online Access:http://rpra-journal.org.ua/index.php/ra/article/view/1370
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Radio physics and radio astronomy

Institution

Radio physics and radio astronomy
id rpra-journalorgua-article-1370
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2023-06-19T05:28:33Z
collection OJS
language Ukrainian
topic solar eclipse
ionosphere
Doppler spectrum
Doppler frequency shift
electron density
geomagnetic field
atmospheric gravity wave
spellingShingle solar eclipse
ionosphere
Doppler spectrum
Doppler frequency shift
electron density
geomagnetic field
atmospheric gravity wave
Chernogor, L. F.
Garmash, K. P.
Zhdanko, Y. H.
Leus, S. G.
Luo, Y.
FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
topic_facet solar eclipse
ionosphere
Doppler spectrum
Doppler frequency shift
electron density
geomagnetic field
atmospheric gravity wave
solar eclipse
ionosphere
Doppler spectrum
Doppler frequency shift
electron density
geomagnetic field
atmospheric gravity wave

format Article
author Chernogor, L. F.
Garmash, K. P.
Zhdanko, Y. H.
Leus, S. G.
Luo, Y.
author_facet Chernogor, L. F.
Garmash, K. P.
Zhdanko, Y. H.
Leus, S. G.
Luo, Y.
author_sort Chernogor, L. F.
title FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
title_short FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
title_full FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
title_fullStr FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
title_full_unstemmed FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
title_sort features of ionospheric effects from the partial solar eclipse over the city of kharkiv on 10 june 2021
title_alt FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021
ОСОБЛИВОСТІ ІОНОСФЕРНИХ ЕФЕКТІВ ЧАСТКОВОГО СОНЯЧНОГО ЗАТЕМНЕННЯ НАД ХАРКОВОМ 10 ЧЕРВНЯ 2021 Р.
description Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv.Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison.Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11).Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere.Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity waveManuscript submitted 05.08.2021Radio phys. radio astron. 2021, 26(4): 326-343REFERENCES1. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear DynamicalSystem. Radio Phys. Radio Astron. vol. 13, is. 2,pp. 120–137.2. CHERNOGOR, L. F., 2013. Physical effects of solar eclipsesin atmosphere and geospace. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).3. CHAPMAN, S., 1932. The influence of a solar eclipse upon the upper atmospheric ionization. Mon. Not. R. Astron. Soc. vol. 92, pp. 413–420. DOI: https://doi.org/10.1093/mnras/92.5.4134. HIGGS, A. J., 1942. Ionospheric measurements made during the total Solar eclipse of 1940 October 1. Mon. Not. R. Astron. Soc. vol. 102, is. 1, pp. 24–34. DOI: https://doi.org/10.1093/mnras/102.1.245. LEDIG, P. G., JONES, M. W., GIESECKE, A. A. and CHERNOSKY, E. J., 1946. Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944. J. Geophys. Res. vol. 51, is. 3, pp. 411–418. DOI: https://doi.org/10.1029/TE051i003p004116. BEYNON, W. J. G. and BROWN, G. M., eds., 1956. Solareclipses and the ionosphere: a symposium held under theauspices of the International Council of Scientific Unions, Mixed Commission on the Ionosphere, in London in August 1955. London: Pergamon Press.7. CHERNOGOR, L. F., 2010. Variations in the Amplitude andPhase of VLF Radiowaves in the Ionosphere during the August1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S00167932100101118. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S00167932100300969. DING, F., WAN, W., NING, B., LIU, L., LE, H., XU, G., WANG, M., LI, G., CHEN, Y., REN, Z., XIONG, B., HU, L.,YUE, X., ZHAO, B., LI, F. and YANG, M., 2010. GPS TE Cresponse to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. Spase Phys. vol. 115, is. A7, id. A07308.DOI: https://doi.org/10.1029/2009JA01511310. LE, H., LIU, L., DING, F., REN, Z., CHEN, Y., WAN, W., NING, B., XU, G., WANG, M., LI, G., XIONG, B. and HU, L., 2010. Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. J. Geophys. Res. Spase Phys. vol. 115, is. A10, id. A10313. DOI: https://doi.org/10.1029/2010JA01560911. SHARMA, S., DASHORA, N., GALAV, P. and PANDEY, R., 2010. Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone. J. Atmos. Sol.-Terr. Phys. vol. 72, is. 18, pp. 1387–1392. DOI: https://doi.org/10.1016/j.jastp.2010.10.00612. CHEN, G., ZHAO, Z., NING, B., DENG, Z., YANG, G.,ZHOU, C., YAO, M., LI, S. and LI, N., 2011. Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. Spase Phys. vol. 116, is. A6, id. A06301. DOI: https://doi.org/10.1029/2010JA01630513. CHERNOGOR, L. F., 2011. The Earth–atmosphere–geospace system: main properties and processes. Int. J. Rem. Sens. vol. 32, is. 11, pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.54151014. GARMASH, K. P., LEUS, S. G. and CHERNOGOR, L. F., 2011. January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron.vol. 16, is. 2, pp. 164–176. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.5015. CHERNOGOR, L. F., 2012. Effects of solar eclipses in theionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S001679321205003916. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses inthe Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI:https://doi.org/10.1134/S001679321205004017. MADHAV HARIDAS, M. K. and MANJU, G., 2012. On theresponse of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15January 2010. J. Geophys. Res. Spase Phys. vol. 117, is. A1, id. A01302. DOI: https://doi.org/10.1029/2011JA01669518. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 2. Observationresults of wave disturbances in the ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X19. BURMAKA, V. P., DOMNIN, I. F. and CHERNOGOR, L. F, 2012. Radiophysical observations of acoustic-gravity waves in the ionosphere during solar eclipse of January 4, 2011. Radio Phys. Radio Astron. vol. 17, is. 4, pp. 344–352. (in Russian).20. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S001679321301005221. DOMNIN, I. F., YEMELʼYANOV, L. YA., KOTOV, D. V., LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 1. Results of incoherentscatter observations. Geomagn. Aeron. vol. 53, is. 1, pp. 113–123. DOI: https://doi.org/10.1134/S001679321301007622. LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solar eclipse of August 1, 2008, over Kharkov: 3. Calculationresults and discussion. Geomagn. Aeron. vol. 53, is. 3,pp. 367–376. DOI: https://doi.org/10.1134/S001679321302009623. PITOUT, F., BLELLY, P.-L. and ALCAYDÉ, D., 2013. Highlatitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation.J. Atmos. Sol.-Terr. Phys. vol. 105–106, pp. 336–349. DOI:https://doi.org/10.1016/j.jastp.2013.02.00424. CHEN, G., WU, C., HUANG, X., ZHAO, Z., ZHONG, D., QI, H., HUANG, L., QIAO, L. and WANG, J., 2015. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J. Geophys. Res. Space Phys. vol. 120, is. 4, pp. 3009–3020. DOI: https://doi.org/10.1002/2014JA02084925. ADEKOYA, B. J. and CHUKWUMA, V. U., 2016. Ionospheric F2 layer responses to total solar eclipses at lowand mid-latitude. J. Atmos. Sol.-Terr. Phys. vol. 138–139,pp. 136–160. DOI: https://doi.org/10.1016/j.jastp.2016.01.00626. CHERNOGOR, L. F., 2016. Atmosphere-ionosphere responseto solar eclipse over Kharkiv on March 20, 2015. Geomagn. Aeron. vol. 56, is. 5, pp. 592–603. DOI: https://doi.org/10.1134/S001679321605003027. CHERNOGOR, L. F., 2016. Wave Processes in the Ionosphere over Europe that Accompanied the Solar Eclipse of March 20, 2015. Kinemat. Phys. Celest. Bodies. vol. 32, is. 4,pp. 196–206. DOI: https://doi.org/10.3103/S088459131604002428. MARLTON, G. J., WILLIAMS, P. D. and NICOLL, K. A., 2016. On the detection and attribution of gravity wavesgenerated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. vol. 374, is. 2077, id. 20150222. DOI: https://doi.org/10.1098/rsta.2015.022229. URYADOV, V. P., KOLCHEV, A. A., VYBORNOV, F. I., SHUMAEV, V. V., EGOSHIN, A. I. and CHERNOV, A. G., 2016. Ionospheric effects of a solar eclipse of March 20,2015 on oblique sounding paths in the Eurasian longitudinalsector. Radiophys. Quantum Electron. vol. 59, is. 6, pp. 431–441. DOI: https://doi.org/10.1007/s11141-016-9711-930. VERHULST, T. G. W., SAPUNDJIEV, D. and STANKOV,S. M., 2016. High-resolution ionospheric observationsand modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. vol. 57, is. 11,pp. 2407–2419. DOI: https://doi.org/10.1016/j.asr.2016.03.00931. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83.DOI: https://doi.org/10.1134/S001679321606006232. COSTER, A. J., GONCHARENKO, L., ZHANG, S.-R.,ERICKSON, P. J., RIDEOUT, W. and VIERINEN, J., 2017.GNSS observations of ionospheric variations during the21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12041–12048. DOI: https://doi.org/10.1002/2017GL07577433. HUBA, J. D. and DROB, D., 2017. SAMI3 prediction of theimpact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. vol. 44,is. 12, pp. 5928–5935. DOI: https://doi.org/10.1002/2017GL07354934. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J. M., CLETTE,F., DE BACKER, H., DE KEYSER, J., DʼHUYS, E.,DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19. DOI: https://doi.org/10.1051/swsc/201701735. ZHANG, S.-R., ERICKSON, P. J., GONCHARENKO, L. P., COSTER, A. J., RIDEOUT, W. and VIERINEN, J., 2017. Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12067–12073. DOI: https://doi.org/10.1002/2017GL07605436. CHERNIAK, I. and ZAKHARENKOVA, I., 2018. Ionospheric total electron content response to the great Americansolar eclipse of 21 August 2017. Geophys. Res. Lett. vol. 45, is. 3, pp. 1199–1208. DOI: https://doi.org/10.1002/2017GL07598937. DANG, T., LEI, J., WANG, W., BURNS, A., ZHANG, B. and ZHANG, S.-R., 2018. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. vol. 45, is. 7, pp. 2918–2925. DOI:https://doi.org/10.1002/2018GL07732838. DANG, T., LEI, J., WANG, W., ZHANG, B., BURNS, A., LE, H., WU, Q., RUAN, H., DOU, X. and WAN, W., 2018. Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 7040–7050. DOI: https://doi.org/10.1029/2018JA02556639. CHERNOGOR, L. F., DOMNIN, I. F., EMELYANOV, L. YA. and LYASHENKO, M. V., 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys. vol. 182, pp. 1–9. DOI: https://doi.org/10.1016/j.jastp.2018.10.01640. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M.,CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipseof 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.01541. WANG, W., DANG, T., LEI, J., ZHANG, S., ZHANG, B. and BURNS, A., 2019. Physical processes driving theresponse of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. vol. 124, is. 4, pp. 2978–2991. DOI: https://doi.org/10.1029/2018JA02547942. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO,V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. RadioSci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS00686643. CHERNOGOR, L. F., GARMASH, K. P., ZHDANKO, Y. H., LEUS, S. G. and PODNOS, V. A., 2020. Software and hardwaresystem of multi-frequency oblique sounding the ionosphere.Visnyk of V. N. Karazin Kharkiv National University.Series “Radio Physics and Electronics”. is. 33, pp. 42–59. (in Ukrainian). DOI: https://doi.org/10.26565/2311-0872-2020-33-0444. MARPLE JR., S. L., 1987. Digital spectral analysis withapplications. Englewood Cliffs, N.J.: Prentice-Hall.45. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV O. F., 2013. The V. N. Karazin KharkivNational University Radio Physical Observatory – thetool for ionosphere monitoring in space experiments. In:S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project “Ionosat-Micro”. Kyiv, Ukraine: Academperiodika Publ.,pp. 160–182. (in Russian).46. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in theAtmosphere: Atmospheric infrasound and gravity waves,their generation and propagation. Amsterdam, New York:Elsevier Scientifi c Publ. Co.47. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv NationalUniversity Publ. (in Russian).48. CHERNOGOR, L. F., 2009. Radio Physical and GeomagneticEffects of Rocket Launches. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).
publisher Видавничий дім «Академперіодика»
publishDate 2021
url http://rpra-journal.org.ua/index.php/ra/article/view/1370
work_keys_str_mv AT chernogorlf featuresofionosphericeffectsfromthepartialsolareclipseoverthecityofkharkivon10june2021
AT garmashkp featuresofionosphericeffectsfromthepartialsolareclipseoverthecityofkharkivon10june2021
AT zhdankoyh featuresofionosphericeffectsfromthepartialsolareclipseoverthecityofkharkivon10june2021
AT leussg featuresofionosphericeffectsfromthepartialsolareclipseoverthecityofkharkivon10june2021
AT luoy featuresofionosphericeffectsfromthepartialsolareclipseoverthecityofkharkivon10june2021
AT chernogorlf osoblivostííonosfernihefektívčastkovogosonâčnogozatemnennânadharkovom10červnâ2021r
AT garmashkp osoblivostííonosfernihefektívčastkovogosonâčnogozatemnennânadharkovom10červnâ2021r
AT zhdankoyh osoblivostííonosfernihefektívčastkovogosonâčnogozatemnennânadharkovom10červnâ2021r
AT leussg osoblivostííonosfernihefektívčastkovogosonâčnogozatemnennânadharkovom10červnâ2021r
AT luoy osoblivostííonosfernihefektívčastkovogosonâčnogozatemnennânadharkovom10červnâ2021r
first_indexed 2025-12-02T15:33:35Z
last_indexed 2025-12-02T15:33:35Z
_version_ 1850836449131233280
spelling rpra-journalorgua-article-13702023-06-19T05:28:33Z FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021 FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021 ОСОБЛИВОСТІ ІОНОСФЕРНИХ ЕФЕКТІВ ЧАСТКОВОГО СОНЯЧНОГО ЗАТЕМНЕННЯ НАД ХАРКОВОМ 10 ЧЕРВНЯ 2021 Р. Chernogor, L. F. Garmash, K. P. Zhdanko, Y. H. Leus, S. G. Luo, Y. solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv.Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison.Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11).Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere.Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity waveManuscript submitted 05.08.2021Radio phys. radio astron. 2021, 26(4): 326-343REFERENCES1. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear DynamicalSystem. Radio Phys. Radio Astron. vol. 13, is. 2,pp. 120–137.2. CHERNOGOR, L. F., 2013. Physical effects of solar eclipsesin atmosphere and geospace. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).3. CHAPMAN, S., 1932. The influence of a solar eclipse upon the upper atmospheric ionization. Mon. Not. R. Astron. Soc. vol. 92, pp. 413–420. DOI: https://doi.org/10.1093/mnras/92.5.4134. HIGGS, A. J., 1942. Ionospheric measurements made during the total Solar eclipse of 1940 October 1. Mon. Not. R. Astron. Soc. vol. 102, is. 1, pp. 24–34. DOI: https://doi.org/10.1093/mnras/102.1.245. LEDIG, P. G., JONES, M. W., GIESECKE, A. A. and CHERNOSKY, E. J., 1946. Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944. J. Geophys. Res. vol. 51, is. 3, pp. 411–418. DOI: https://doi.org/10.1029/TE051i003p004116. BEYNON, W. J. G. and BROWN, G. M., eds., 1956. Solareclipses and the ionosphere: a symposium held under theauspices of the International Council of Scientific Unions, Mixed Commission on the Ionosphere, in London in August 1955. London: Pergamon Press.7. CHERNOGOR, L. F., 2010. Variations in the Amplitude andPhase of VLF Radiowaves in the Ionosphere during the August1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S00167932100101118. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S00167932100300969. DING, F., WAN, W., NING, B., LIU, L., LE, H., XU, G., WANG, M., LI, G., CHEN, Y., REN, Z., XIONG, B., HU, L.,YUE, X., ZHAO, B., LI, F. and YANG, M., 2010. GPS TE Cresponse to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. Spase Phys. vol. 115, is. A7, id. A07308.DOI: https://doi.org/10.1029/2009JA01511310. LE, H., LIU, L., DING, F., REN, Z., CHEN, Y., WAN, W., NING, B., XU, G., WANG, M., LI, G., XIONG, B. and HU, L., 2010. Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. J. Geophys. Res. Spase Phys. vol. 115, is. A10, id. A10313. DOI: https://doi.org/10.1029/2010JA01560911. SHARMA, S., DASHORA, N., GALAV, P. and PANDEY, R., 2010. Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone. J. Atmos. Sol.-Terr. Phys. vol. 72, is. 18, pp. 1387–1392. DOI: https://doi.org/10.1016/j.jastp.2010.10.00612. CHEN, G., ZHAO, Z., NING, B., DENG, Z., YANG, G.,ZHOU, C., YAO, M., LI, S. and LI, N., 2011. Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. Spase Phys. vol. 116, is. A6, id. A06301. DOI: https://doi.org/10.1029/2010JA01630513. CHERNOGOR, L. F., 2011. The Earth–atmosphere–geospace system: main properties and processes. Int. J. Rem. Sens. vol. 32, is. 11, pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.54151014. GARMASH, K. P., LEUS, S. G. and CHERNOGOR, L. F., 2011. January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron.vol. 16, is. 2, pp. 164–176. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.5015. CHERNOGOR, L. F., 2012. Effects of solar eclipses in theionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S001679321205003916. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses inthe Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI:https://doi.org/10.1134/S001679321205004017. MADHAV HARIDAS, M. K. and MANJU, G., 2012. On theresponse of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15January 2010. J. Geophys. Res. Spase Phys. vol. 117, is. A1, id. A01302. DOI: https://doi.org/10.1029/2011JA01669518. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 2. Observationresults of wave disturbances in the ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X19. BURMAKA, V. P., DOMNIN, I. F. and CHERNOGOR, L. F, 2012. Radiophysical observations of acoustic-gravity waves in the ionosphere during solar eclipse of January 4, 2011. Radio Phys. Radio Astron. vol. 17, is. 4, pp. 344–352. (in Russian).20. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S001679321301005221. DOMNIN, I. F., YEMELʼYANOV, L. YA., KOTOV, D. V., LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 1. Results of incoherentscatter observations. Geomagn. Aeron. vol. 53, is. 1, pp. 113–123. DOI: https://doi.org/10.1134/S001679321301007622. LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solar eclipse of August 1, 2008, over Kharkov: 3. Calculationresults and discussion. Geomagn. Aeron. vol. 53, is. 3,pp. 367–376. DOI: https://doi.org/10.1134/S001679321302009623. PITOUT, F., BLELLY, P.-L. and ALCAYDÉ, D., 2013. Highlatitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation.J. Atmos. Sol.-Terr. Phys. vol. 105–106, pp. 336–349. DOI:https://doi.org/10.1016/j.jastp.2013.02.00424. CHEN, G., WU, C., HUANG, X., ZHAO, Z., ZHONG, D., QI, H., HUANG, L., QIAO, L. and WANG, J., 2015. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J. Geophys. Res. Space Phys. vol. 120, is. 4, pp. 3009–3020. DOI: https://doi.org/10.1002/2014JA02084925. ADEKOYA, B. J. and CHUKWUMA, V. U., 2016. Ionospheric F2 layer responses to total solar eclipses at lowand mid-latitude. J. Atmos. Sol.-Terr. Phys. vol. 138–139,pp. 136–160. DOI: https://doi.org/10.1016/j.jastp.2016.01.00626. CHERNOGOR, L. F., 2016. Atmosphere-ionosphere responseto solar eclipse over Kharkiv on March 20, 2015. Geomagn. Aeron. vol. 56, is. 5, pp. 592–603. DOI: https://doi.org/10.1134/S001679321605003027. CHERNOGOR, L. F., 2016. Wave Processes in the Ionosphere over Europe that Accompanied the Solar Eclipse of March 20, 2015. Kinemat. Phys. Celest. Bodies. vol. 32, is. 4,pp. 196–206. DOI: https://doi.org/10.3103/S088459131604002428. MARLTON, G. J., WILLIAMS, P. D. and NICOLL, K. A., 2016. On the detection and attribution of gravity wavesgenerated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. vol. 374, is. 2077, id. 20150222. DOI: https://doi.org/10.1098/rsta.2015.022229. URYADOV, V. P., KOLCHEV, A. A., VYBORNOV, F. I., SHUMAEV, V. V., EGOSHIN, A. I. and CHERNOV, A. G., 2016. Ionospheric effects of a solar eclipse of March 20,2015 on oblique sounding paths in the Eurasian longitudinalsector. Radiophys. Quantum Electron. vol. 59, is. 6, pp. 431–441. DOI: https://doi.org/10.1007/s11141-016-9711-930. VERHULST, T. G. W., SAPUNDJIEV, D. and STANKOV,S. M., 2016. High-resolution ionospheric observationsand modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. vol. 57, is. 11,pp. 2407–2419. DOI: https://doi.org/10.1016/j.asr.2016.03.00931. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83.DOI: https://doi.org/10.1134/S001679321606006232. COSTER, A. J., GONCHARENKO, L., ZHANG, S.-R.,ERICKSON, P. J., RIDEOUT, W. and VIERINEN, J., 2017.GNSS observations of ionospheric variations during the21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12041–12048. DOI: https://doi.org/10.1002/2017GL07577433. HUBA, J. D. and DROB, D., 2017. SAMI3 prediction of theimpact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. vol. 44,is. 12, pp. 5928–5935. DOI: https://doi.org/10.1002/2017GL07354934. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J. M., CLETTE,F., DE BACKER, H., DE KEYSER, J., DʼHUYS, E.,DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19. DOI: https://doi.org/10.1051/swsc/201701735. ZHANG, S.-R., ERICKSON, P. J., GONCHARENKO, L. P., COSTER, A. J., RIDEOUT, W. and VIERINEN, J., 2017. Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12067–12073. DOI: https://doi.org/10.1002/2017GL07605436. CHERNIAK, I. and ZAKHARENKOVA, I., 2018. Ionospheric total electron content response to the great Americansolar eclipse of 21 August 2017. Geophys. Res. Lett. vol. 45, is. 3, pp. 1199–1208. DOI: https://doi.org/10.1002/2017GL07598937. DANG, T., LEI, J., WANG, W., BURNS, A., ZHANG, B. and ZHANG, S.-R., 2018. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. vol. 45, is. 7, pp. 2918–2925. DOI:https://doi.org/10.1002/2018GL07732838. DANG, T., LEI, J., WANG, W., ZHANG, B., BURNS, A., LE, H., WU, Q., RUAN, H., DOU, X. and WAN, W., 2018. Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 7040–7050. DOI: https://doi.org/10.1029/2018JA02556639. CHERNOGOR, L. F., DOMNIN, I. F., EMELYANOV, L. YA. and LYASHENKO, M. V., 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys. vol. 182, pp. 1–9. DOI: https://doi.org/10.1016/j.jastp.2018.10.01640. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M.,CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipseof 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.01541. WANG, W., DANG, T., LEI, J., ZHANG, S., ZHANG, B. and BURNS, A., 2019. Physical processes driving theresponse of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. vol. 124, is. 4, pp. 2978–2991. DOI: https://doi.org/10.1029/2018JA02547942. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO,V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. RadioSci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS00686643. CHERNOGOR, L. F., GARMASH, K. P., ZHDANKO, Y. H., LEUS, S. G. and PODNOS, V. A., 2020. Software and hardwaresystem of multi-frequency oblique sounding the ionosphere.Visnyk of V. N. Karazin Kharkiv National University.Series “Radio Physics and Electronics”. is. 33, pp. 42–59. (in Ukrainian). DOI: https://doi.org/10.26565/2311-0872-2020-33-0444. MARPLE JR., S. L., 1987. Digital spectral analysis withapplications. Englewood Cliffs, N.J.: Prentice-Hall.45. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV O. F., 2013. The V. N. Karazin KharkivNational University Radio Physical Observatory – thetool for ionosphere monitoring in space experiments. In:S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project “Ionosat-Micro”. Kyiv, Ukraine: Academperiodika Publ.,pp. 160–182. (in Russian).46. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in theAtmosphere: Atmospheric infrasound and gravity waves,their generation and propagation. Amsterdam, New York:Elsevier Scientifi c Publ. Co.47. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv NationalUniversity Publ. (in Russian).48. CHERNOGOR, L. F., 2009. Radio Physical and GeomagneticEffects of Rocket Launches. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian). Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv.Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison.Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11).Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere.Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity waveManuscript submitted 05.08.2021Radio phys. radio astron. 2021, 26(4):326-343REFERENCES1. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear DynamicalSystem. Radio Phys. Radio Astron. vol. 13, is. 2,pp. 120–137.2. CHERNOGOR, L. F., 2013. Physical effects of solar eclipsesin atmosphere and geospace. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).3. CHAPMAN, S., 1932. The infl uence of a solar eclipse uponthe upper atmospheric ionization. Mon. Not. R. Astron. Soc.vol. 92, pp. 413–420.4. HIGGS, A. J., 1942. Ionospheric measurements made during the total Solar eclipse of 1940 October 1. Mon. Not. R. Astron. Soc. vol. 102, is. 1, pp. 24–34. DOI: 10.1093/mnras/102.1.245. LEDIG, P. G., JONES, M. W., GIESECKE, A. A. and CHERNOSKY, E. J., 1946. Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944. J. Geophys. Res. vol. 51, is. 3, pp. 411–418. DOI: 10.1029/TE051i003p004116. BEYNON, W. J. G. and BROWN, G. M., eds., 1956. Solareclipses and the ionosphere: a symposium held under theauspices of the International Council of Scientific Unions, Mixed Commission on the Ionosphere, in London in August 1955. London: Pergamon Press.7. CHERNOGOR, L. F., 2010. Variations in the Amplitude andPhase of VLF Radiowaves in the Ionosphere during the August1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: 10.1134/S00167932100101118. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: 10.1134/S00167932100300969. DING, F., WAN, W., NING, B., LIU, L., LE, H., XU, G., WANG, M., LI, G., CHEN, Y., REN, Z., XIONG, B., HU, L.,YUE, X., ZHAO, B., LI, F. and YANG, M., 2010. GPS TE Cresponse to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. Spase Phys. vol. 115, is. A7, id. A07308.DOI: 10.1029/2009JA01511310. LE, H., LIU, L., DING, F., REN, Z., CHEN, Y., WAN, W., NING, B., XU, G., WANG, M., LI, G., XIONG, B. and HU, L., 2010. Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. J. Geophys. Res. Spase Phys. vol. 115, is. A10, id. A10313. DOI: 10.1029/2010JA01560911. SHARMA, S., DASHORA, N., GALAV, P. and PANDEY, R., 2010. Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone. J. Atmos. Sol.-Terr. Phys. vol. 72, is. 18, pp. 1387–1392. DOI: 10.1016/j.jastp.2010.10.00612. CHEN, G., ZHAO, Z., NING, B., DENG, Z., YANG, G.,ZHOU, C., YAO, M., LI, S. and LI, N., 2011. Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. Spase Phys. vol. 116, is. A6, id. A06301. DOI: 10.1029/2010JA01630513. CHERNOGOR, L. F., 2011. The Earth–atmosphere–geospace system: main properties and processes. Int. J. Rem. Sens. vol. 32, is. 11, pp. 3199–3218. DOI: 10.1080/01431161.2010.54151014. GARMASH, K. P., LEUS, S. G. and CHERNOGOR, L. F., 2011. January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron.vol. 16, is. 2, pp. 164–176. (in Russian).15. CHERNOGOR, L. F., 2012. Effects of solar eclipses in theionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI:10.1134/S001679321205003916. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses inthe Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI:10.1134/S001679321205004017. MADHAV HARIDAS, M. K. and MANJU, G., 2012. On theresponse of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15January 2010. J. Geophys. Res. Spase Phys. vol. 117, is. A1, id. A01302. DOI: 10.1029/2011JA01669518. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 2. Observationresults of wave disturbances in the ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: 10.1134/S001679321304004X19. BURMAKA, V. P., DOMNIN, I. F. and CHERNOGOR, L. F, 2012. Radiophysical observations of acoustic-gravity waves in the ionosphere during solar eclipse of January 4, 2011. Radio Phys. Radio Astron. vol. 17, is. 4, pp. 344–352. (in Russian).20. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: 10.1134/S001679321301005221. DOMNIN, I. F., YEMELʼYANOV, L. YA., KOTOV, D. V., LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 1. Results of incoherentscatter observations. Geomagn. Aeron. vol. 53, is. 1, pp. 113–123. DOI: 10.1134/S001679321301007622. LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solar eclipse of August 1, 2008, over Kharkov: 3. Calculationresults and discussion. Geomagn. Aeron. vol. 53, is. 3,pp. 367–376. DOI: 10.1134/S001679321302009623. PITOUT, F., BLELLY, P.-L. and ALCAYDÉ, D., 2013. Highlatitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation.J. Atmos. Sol.-Terr. Phys. vol. 105–106, pp. 336–349. DOI:10.1016/j.jastp.2013.02.00424. CHEN, G., WU, C., HUANG, X., ZHAO, Z., ZHONG, D., QI, H., HUANG, L., QIAO, L. and WANG, J., 2015. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J. Geophys. Res. Space Phys. vol. 120, is. 4, pp. 3009–3020. DOI: 10.1002/2014JA02084925. ADEKOYA, B. J. and CHUKWUMA, V. U., 2016. Ionospheric F2 layer responses to total solar eclipses at lowand mid-latitude. J. Atmos. Sol.-Terr. Phys. vol. 138–139,pp. 136–160. DOI: 10.1016/j.jastp.2016.01.00626. CHERNOGOR, L. F., 2016. Atmosphere-ionosphere responseto solar eclipse over Kharkiv on March 20, 2015. Geomagn. Aeron. vol. 56, is. 5, pp. 592–603. DOI: 10.1134/S001679321605003027. CHERNOGOR, L. F., 2016. Wave Processes in the Ionosphere over Europe that Accompanied the Solar Eclipse of March 20, 2015. Kinemat. Phys. Celest. Bodies. vol. 32, is. 4,pp. 196–206. DOI: 10.3103/S088459131604002428. MARLTON, G. J., WILLIAMS, P. D. and NICOLL, K. A., 2016. On the detection and attribution of gravity wavesgenerated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. vol. 374, is. 2077, id. 20150222. DOI: 10.1098/rsta.2015.022229. URYADOV, V. P., KOLCHEV, A. A., VYBORNOV, F. I., SHUMAEV, V. V., EGOSHIN, A. I. and CHERNOV, A. G., 2016. Ionospheric effects of a solar eclipse of March 20,2015 on oblique sounding paths in the Eurasian longitudinalsector. Radiophys. Quantum Electron. vol. 59, is. 6, pp. 431–441. DOI: 10.1007/s11141-016-9711-930. VERHULST, T. G. W., SAPUNDJIEV, D. and STANKOV,S. M., 2016. High-resolution ionospheric observationsand modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. vol. 57, is. 11,pp. 2407–2419. DOI: 10.1016/j.asr.2016.03.00931. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83.DOI: 10.1134/S001679321606006232. COSTER, A. J., GONCHARENKO, L., ZHANG, S.-R.,ERICKSON, P. J., RIDEOUT, W. and VIERINEN, J., 2017.GNSS observations of ionospheric variations during the21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12041–12048. DOI: 10.1002/2017GL07577433. HUBA, J. D. and DROB, D., 2017. SAMI3 prediction of theimpact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. vol. 44,is. 12, pp. 5928–5935. DOI: 10.1002/2017GL07354934. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J. M., CLETTE,F., DE BACKER, H., DE KEYSER, J., DʼHUYS, E.,DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19.DOI: 10.1051/swsc/201701735. ZHANG, S.-R., ERICKSON, P. J., GONCHARENKO, L. P., COSTER, A. J., RIDEOUT, W. and VIERINEN, J., 2017. Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12067–12073. DOI: 10.1002/2017GL07605436. CHERNIAK, I. and ZAKHARENKOVA, I., 2018. Ionospheric total electron content response to the great Americansolar eclipse of 21 August 2017. Geophys. Res. Lett. vol. 45, is. 3, pp. 1199–1208. DOI: 10.1002/2017GL07598937. DANG, T., LEI, J., WANG, W., BURNS, A., ZHANG, B. and ZHANG, S.-R., 2018. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. vol. 45, is. 7, pp. 2918–2925. DOI:10.1002/2018GL07732838. DANG, T., LEI, J., WANG, W., ZHANG, B., BURNS, A., LE, H., WU, Q., RUAN, H., DOU, X. and WAN, W., 2018. Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 7040–7050. DOI: 10.1029/2018JA02556639. CHERNOGOR, L. F., DOMNIN, I. F., EMELYANOV, L. YA. and LYASHENKO, M. V., 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys. vol. 182, pp. 1–9. DOI: 10.1016/j.jastp.2018.10.01640. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M.,CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipseof 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: 10.1016/j.jastp.2019.05.01541. WANG, W., DANG, T., LEI, J., ZHANG, S., ZHANG, B. and BURNS, A., 2019. Physical processes driving theresponse of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. vol. 124, is. 4, pp. 2978–2991. DOI: 10.1029/2018JA02547942. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO,V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. RadioSci. vol. 55, is. 2, id. e2019RS006866. DOI: 10.1029/2019RS00686643. CHERNOGOR, L. F., GARMASH, K. P., ZHDANKO, Y. H., LEUS, S. G. and PODNOS, V. A., 2020. Software and hardwaresystem of multi-frequency oblique sounding the ionosphere.Visnyk of V. N. Karazin Kharkiv National University.Series “Radio Physics and Electronics”. is. 33, pp. 42–59. (in Ukrainian). DOI: 10.26565/2311-0872-2020-33-0444. MARPLE JR., S. L., 1987. Digital spectral analysis withapplications. Englewood Cliffs, N.J.: Prentice-Hall.45. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV O. F., 2013. The V. N. Karazin KharkivNational University Radio Physical Observatory – thetool for ionosphere monitoring in space experiments. In:S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project “Ionosat-Micro”. Kyiv, Ukraine: Academperiodika Publ.,pp. 160–182. (in Russian).46. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in theAtmosphere: Atmospheric infrasound and gravity waves,their generation and propagation. Amsterdam, New York:Elsevier Scientifi c Publ. Co.47. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv NationalUniversity Publ. (in Russian).48. CHERNOGOR, L. F., 2009. Radio Physical and GeomagneticEffects of Rocket Launches. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian). Предмет і мета роботи: Сонячні затемнення належать до високоенергетичних джерел збурення підсистем у системах Сонце – міжпланетне середовище – магнітосфера – іоносфера – атмосфера – Земля та Земля – атмосфера – іоносфера – магнітосфера. Під час сонячного затемнення активується взаємодія підсистем у цих системах, збурюються параметри динамічних процесів. Дослідження цих процесів сприяє кращому розумінню будови та динаміки підсистем. Реакція іоносфери на сонячне затемнення залежить від фази сонячного затемнення, положення у циклі сонячної активності, пори року, часу доби, місця спостереження, стану космічної погоди тощо. Тому дослідження впливу на іоносферу кожного нового сонячного затемнення залишається актуальною геофізичною та радіофізичною задачею. Мета роботи – опис варіацій характеристик радіохвиль і параметрів іоносфери, що супроводжували часткове сонячне затемнення над Харковом 10 червня 2021 р.Методи та методологія: Для спостережень використовувалися засоби вертикального і похилого доплерівського зондування, розміщені в Радіофізичній обсерваторії Харківського національного університету імені В. Н. Каразіна. Для порівняння залучалися дані магнітної станції “Львів”.Результати: Виконано радіофізичні спостереження за динамічними процесами в іоносфері протягом сонячного затемнення 10 червня 2021 р. і в контрольні дні. Встановлено, що часові варіації доплерівського зміщення частотина вертикальних і похилих радіотрасах в цілому були подібними. Доплерівські спектри на цих радіотрасах, власне кажучи, відрізнялися. На похилих радіотрасах помітніше виявлялася багатомодовість. Сонячне затемнення супроводжувалося посиленням хвильової активності в атмосфері й іоносфері. Спостерігалося не менше трьох хвильових цугів. Значення періодів (близько 5÷12 хв) і відносних амплітуд збурень концентрації електронів (δN≈0.3÷0.6 %) свідчили про те, що хвильові збурення викликані атмосферними гравітаційними хвилями. Оцінена амплітуда геомагнітних варіацій з періодом 6÷8 хв. Вона становила близько 0.5÷1 нТл. Приблизно таке саме значення зареєстрованов X-компоненті геомагнітного поля на найближчій магнітній станції. Аперіодичний ефект сонячного затемнення виявився занадто малим (менше 0.01 Гц), щоб його можна було впевнено спостерігати. Малість ефекту зумовлена незначною фазою часткового затемнення над Харковом (не більше 0.11).Висновки: До особливостей сонячного затемнення 10 червня 2021 р. належать незначний аперіодичний ефект і активізація хвильової активності в атмосфері та іоносфері.Ключові слова: сонячне затемнення; іоносфера; доплерівський спектр; доплерівське зміщення частоти; концентрація електронів; геомагнітне поле; атмосферна гравітаційна хвиляСтаття надійшла до редакції 05.08.2021Radio phys. radio astron. 2021, 26(4): 326-343СПИСОК ЛІТЕРАТУРИ1. Chernogor L. F. and Rozumenko V. Т. Earth – Atmosphere– Geospace as an Open Nonlinear DynamicalSystem. Radio Phys. Radio Astron. 2008. Vol. 13, Is. 2.P. 120–137.2. Черногор Л. Ф. Физические эффекты солнечных затмений в атмосфере и геокосмосе. Харьков: ХНУ имениВ. Н. Каразина, 2013. 480 с.3. Chapman S. The influence of a solar eclipse upon the upper atmospheric ionization. Mon. Not. R. Astron. Soc. 1932.Vol. 92. P. 413–420.4. Higgs A. J. Ionospheric Measurements Made During theTotal Solar Eclipse of 1940 October 1. Mon. Not. R. Astron.Soc. 1942. Vol. 102, Is. 1. P. 24–34. DOI: 10.1093/mnras/102.1.245. Ledig P. G., Jones M. W., Giesecke A. A., and Chernosky E. J.Effects on the ionosphere at Huancayo, Peru, of the solareclipse, January 25, 1944. J. Geophys. Res. 1946. Vol. 51, Is. 3. P. 411–418. DOI: 10.1029/TE051i003p004116. Beynon W. J. G. and Brown G. M., eds. Solar eclipsesand the ionosphere: a symposium held under the auspices of the International Council of Scientifi c Unions, Mixed Commissionon the Ionosphere, in London in August 1955. London:Pergamon Press., 1956.7. Chernogor L. F. Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1,2008, Solar Eclipse. Geomagn. Aeron. 2010. Vol. 50, Is. 1.P. 96–106. DOI: 10.1134/S00167932100101118. Chernogor L. F. Wave Response of the Ionosphere tothe Partial Solar Eclipse of August 1, 2008. Geomagn.Aeron. 2010. Vol. 50, Is. 3. P. 346–361. DOI: 10.1134/S00167932100300969. Ding F., Wan W., Ning B., Liu L., Le H., Xu G., Wang M.,Li G., Chen Y., Ren Z., Xiong B., Hu L., Yue X., Zhao B.,Li F., and Yang M. GPS TEC response to the 22 July 2009total solar eclipse in East Asia. J. Geophys. Res. SpasePhys. 2010. Vol. 115, Is. A7. id. A07308. DOI: 10.1029/2009JA01511310. Le H., Liu L., Ding F., Ren Z., Chen Y., Wan W., Ning B.,Xu G., Wang M., Li G., Xiong B., and Hu L. Observationsand modeling of the ionospheric behaviors over the eastAsia zone during the 22 July 2009 solar eclipse. J. Geophys.Res. Spase Phys. 2010. Vol. 115, Is. A10. id. A10313. DOI:10.1029/2010JA01560911. Sharma S., Dashora N., Galav P., and Pandey R. Total solareclipse of July 22, 2009: Its impact on the total electroncontent and ionospheric electron density in the Indian zone.J. Atmos. Sol.-Terr. Phys. 2010. Vol. 72, Is. 18. P. 1387–1392.DOI: 10.1016/j.jastp.2010.10.00612. Chen G., Zhao Z., Ning B., Deng Z., Yang G., Zhou C.,Yao M., Li S., and Li N. Latitudinal dependence of theionospheric response to solar eclipse of 15 January 2010.J. Geophys. Res. Spase Phys. 2011. Vol. 116, Is. A6.id. A06301. DOI: 10.1029/2010JA01630513. Chernogor L. F. The Earth–atmosphere–geospace system:main properties and processes. Int. J. Rem. Sens. 2011. Vol. 32,Is. 11. P. 3199–3218. DOI: 10.1080/01431161.2010.54151014. Гармаш К. П., Леус С. Г., Черногор Л. Ф. Радиофизические эффекты солнечного затмения 4 января 2011 г.на наклоных радиотрассах. Радиофизика и радиоастрономия. 2011. Т. 16, № 2, С. 164–176.15. Chernogor L. F. Effects of solar eclipses in the ionosphere:Results of Doppler sounding: 1. Experimental data. Geomagn.Aeron. 2012. Vol. 52, Is. 6. P. 768–778. DOI: 10.1134/S001679321205003916. Chernogor L. F. Effects of solar eclipses in the ionosphere:Doppler sounding results: 2. Spectral analysis. Geomagn.Aeron. 2012. Vol. 52, Is. 6. P. 779–792. DOI: 10.1134/S001679321205004017. Madhav Haridas M. K. and Manju G. On the response ofthe ionospheric F region over Indian low-latitude stationGadanki to the annular solar eclipse of 15 January2010. J. Geophys. Res. Spase Phys. 2012. Vol. 117, Is. A1.id. A01302. DOI: 10.1029/2011JA01669518. Burmaka V. P. and Chernogor L. F. Solar eclipse of August1, 2008, above Kharkov: 2. Observation results of wavedisturbances in the ionosphere. Geomagn. Aeron. 2013.Vol. 53, Is. 4. P. 479–491. DOI: 10.1134/S001679321304004X19. Бурмака В. П., Домнин И. Ф., Черногор Л. Ф. Радиофизические наблюдения акустико-гравитационных волнв ионосфере во время солнечного затмения 4 января2011 г. Радиофизика и радиоастрономия. 2012. Т. 17,№ 4. С. 344–352.20. Chernogor L. F. Physical processes in the middle ionosphereaccompanying the solar eclipse of January 4, 2011,in Kharkov. Geomagn. Aeron. 2013. Vol. 53, Is. 1. P. 19–31.DOI: 10.1134/S001679321301005221. Domnin I. F., Yemelʼyanov L. Ya., Kotov D. V., LyashenkoM. V., and Chernogor L. F. Solar eclipse of August 1,2008, above Kharkov: 1. Results of incoherent scatter observations.Geomagn. Aeron. 2013. Vol. 53, Is. 1. P. 113–123.DOI: 10.1134/S001679321301007622. Lyashenko M. V. and Chernogor L. F. Solar eclipse ofAugust 1, 2008, over Kharkov: 3. Calculation results and discussion.Geomagn. Aeron. 2013. Vol. 53, Is. 3. P. 367–376.DOI: 10.1134/S001679321302009623. Pitout F., Blelly P.-L., and Alcaydé D. High-latitude ionosphericresponse to the solar eclipse of 1 August 2008:EISCAT observations and TRANSCAR simulation. J. Atmos.Sol.-Terr. Phys. 2013. Vol. 105–106. P. 336–349. DOI:10.1016/j.jastp.2013.02.00424. Chen G., Wu C., Huang X., Zhao Z., Zhong D., Qi H.,Huang L., Qiao L., and Wang J. Plasma fl ux and gravitywaves in the midlatitude ionosphere during the solar eclipseof 20 May 2012. J. Geophys. Res. Space Phys. 2015. Vol. 120,Is. 4. P. 3009–3020. DOI: 10.1002/2014JA02084925. Adekoya B. J. and Chukwuma V. U. Ionospheri F2 layerresponses to total solar eclipses at low and mid-latitude.J. Atmos. Sol.-Terr. Phys. 2016. Vol. 138–139, P. 136–160.DOI: 10.1016/j.jastp.2016.01.00626. Chernogor L. F. Atmosphere-ionosphere response to solareclipse over Kharkiv on March 20, 2015. Geomagn.Aeron. 2016. Vol. 56, Is. 5. P. 592–603. DOI: 10.1134/S001679321605003027. Chernogor L. F. Wave Processes in the Ionosphere overEurope that Accompanied the Solar Eclipse of March 20,2015. Kinemat. Phys. Celest. Bodies. 2016. Vol. 32, Is. 4.P. 196–206. DOI: 10.3103/S088459131604002428. Marlton G. J., Williams P. D., and Nicoll K. A. On the detectionand attribution of gravity waves generated bythe 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A.2016. Vol. 374, Is. 2077. id. 20150222. DOI: 10.1098/rsta.2015.022229. Uryadov V. P., Kolchev A. A., Vybornov F. I., Shumaev V. V.,Egoshin A. I., and Chernov A. G. Ionospheric Effects of aSolar Eclipse of March 20, 2015 on Oblique Sounding Pathsin the Eurasian Longitudinal Sector. Radiophys. QuantumElectron. 2016. Vol. 59, Is. 6. P. 431–441. DOI: 10.1007/s11141-016-9711-930. Verhulst T. G. W., Sapundjiev D., and Stankov S. M. Highresolutionionospheric observations and modeling over Belgiumduring the solar eclipse of 20 March 2015 includingfi rst results of ionospheric tilt and plasma drift measurements.Adv. Space Res. 2016. Vol. 57, Is. 11. P. 2407–2419. DOI:10.1016/j.asr.2016.03.00931. Chernogor L. F. and Garmash K. P. Magneto-Ionospheric Effectsof the Solar Eclipse of March 20, 2015, over Kharkov.Geomagn. Aeron. 2017. Vol. 57, Is. 1. P. 72–83. DOI:10.1134/S001679321606006232. Coster A. J., Goncharenko L., Zhang S.-R., Erickson P. J., RideoutW., and Vierinen J. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophys.Res. Lett. 2017. Vol. 44, Is. 24. P. 12041–12048. DOI:10.1002/2017GL07577433. Huba J. D. and Drob D. SAMI3 prediction of the impact ofthe 21 August 2017 total solar eclipse on the ionosphere/plasmaspheresystem. Geophysis. Res. Lett. 2017. Vol. 44, Is. 12.P. 5928–5935. DOI: 10.1002/2017GL07354934. Stankov S. M., Bergeot N., Berghmans D., Bolsée D., BruyninxC., Chevalier J.-M., Clette F., De Backer H., De KeyserJ., DʼHuys E., Dominique M., Lemaire J. F., MagdalenićJ., Marqué C., Pereira N., Pierrard V., Sapundjiev D.,Seaton D. B., Stegen K., Van der Linden R., Verhulst T. G. W.,and West M. J. Multi-instrument observations of the solareclipse on 20 March 2015 and its effects on the ionosphereover Belgium and Europe. J. Space Weather Space Clim.2017. Vol. 7. id. A19. DOI: 10.1051/swsc/201701735. Zhang S. R., Erickson P. J., Goncharenko L. P., Coster A. J.,Rideout W., and Vierinen J. Ionospheric Bow Waves andPerturbations Induced by the 21 August 2017 Solar Eclipse.Geophys. Res. Lett. 2017. Vol. 44, Is. 24. P. 12067–12073.DOI: 10.1002/2017GL07605436. Cherniak I. and Zakharenkova I. Ionospheric Total ElectronContent Response to the Great American Solar Eclipse of21 August 2017. Geophys. Res. Lett. 2018. Vol. 45, Is. 3.P. 1199–1208. DOI: 10.1002/2017GL07598937. Dang T., Lei J., Wang W., Burns A., Zhang B., and Zhang S.-R.Suppression of the Polar Tongue of Ionization During the21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2018.Vol. 45, Is. 7. P. 2918–2925. DOI: 10.1002/2018GL07732838. Dang T., Lei J., Wang W., Zhang B., Burns A., Le H., Wu Q.,Ruan H., Dou X., and Wan W. Global Responses of theCoupled Thermosphere and Ionosphere System to the August2017 Great American Solar Eclipse. J. Geophys. Res.Space Phys. 2018. Vol. 123, Is. 8. P. 7040–7050. DOI:10.1029/2018JA02556639. Chernogor L. F., Domnin I. F., Emelyanov L. Ya., and LyashenkoM. V. Physical processes in the ionosphere duringthe solar eclipse on March 20, 2015 over Kharkiv, Ukraine(49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys. 2019. Vol. 182.P. 1–9. DOI: 10.1016/j.jastp.2018.10.01640. Panasenko S. V., Otsuka Y., Van de Kamp M., Chernogor L. F.,Shinbori A., Tsugawa T., and Nishioka M. Observationand characterization of traveling ionospheric disturbancesinduced by solar eclipse of 20 March 2015 using incoherentscatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. 2019. Vol. 191. id. 105051. DOI: 10.1016/j.jastp.2019.05.01541. Wang W., Dang T., Lei J., Zhang S., Zhang B., and Burns A.Physical Processes Driving the Response of the F2 RegionIonosphere to the 21 August 2017 Solar Eclipse at MillstoneHill. J. Geophys. Res. Space Phys. 2019. Vol. 124, Is. 4.P. 2978–2991. DOI: 10.1029/2018JA02547942. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T.,and Zheng Y. Radio Monitoring of Dynamic Processes inthe Ionosphere Over China During the Partial Solar Eclipseof 11 August 2018. Radio Sci. 2020. Vol. 55, Is. 2.id. e2019RS006866. DOI: 10.1029/2019RS00686643. Чорногор Л. Ф., Гармаш К. П., Жданко Є. Г., Леус С. Г.,Поднос В. А. Програмно-апаратний комплекс багаточастотного похилого зондування іоносфери. Вісник Харківського національного університету імені В. Н. Каразіна. Серія “Радіофізика та електроніка”. 2020. Т. 33.С. 42–59. DOI: 10.26565/2311-0872-2020-33-0444. Marple Jr. S. L. Digital spectral analysis with applications.Englewood Cliffs, N.J.: Prentice-Hall, 1987. 492 p. 45. Черногор Л. Ф., Гармаш К. П., Поднос В. А., Тырнов О. Ф. Радиофизическая обсерватория Харьковского национального университета имени В. Н. Каразина – средство для мониторинга ионосферы в космических экспериментах. Под ред. С. А. Засухи, О. <span style="font-family: Times New Roman, seri Видавничий дім «Академперіодика» 2021-11-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1370 10.15407/rpra26.04.326 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 4 (2021); 326 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 4 (2021); 326 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 4 (2021); 326 2415-7007 1027-9636 10.15407/rpra26.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1370/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY