LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH
Purpose. The object of the study are electron density depletions (‘holes’) occurring in the ionospheric F-region under the action of rocket exhaust products. The purpose is to present and discuss the results of observations concerning the ionospheric holes that were detected in the course of a numbe...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1376 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1376 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2023-06-20T14:13:38Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
|
| spellingShingle |
Chernogor, L. F. LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| topic_facet |
|
| format |
Article |
| author |
Chernogor, L. F. |
| author_facet |
Chernogor, L. F. |
| author_sort |
Chernogor, L. F. |
| title |
LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| title_short |
LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| title_full |
LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| title_fullStr |
LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| title_full_unstemmed |
LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH |
| title_sort |
large-scale reductions in the electron density of ionospheric f-region, observable along rocket trajectories at launch |
| title_alt |
ВЕЛИКОМАСШТАБНІ ЗНИЖЕННЯ КОНЦЕНТРАЦIЇ ЕЛЕКТРОНIВ У F-ОБЛАСТI ЙОНОСФЕРИ ВЗДОВЖ ТРАЄКТОРІЇ СТАРТУЮЧОЇ РАКЕТИ |
| description |
Purpose. The object of the study are electron density depletions (‘holes’) occurring in the ionospheric F-region under the action of rocket exhaust products. The purpose is to present and discuss the results of observations concerning the ionospheric holes that were detected in the course of a number of launches of medium-lift Kosmos vehicles from the Kapustin Yar spaceport. Neither that cosmodrome, nor the rocket type had been subjects of similar analysis before.Design/methodology/approach. The observations at the Kapustin Yar cosmodrome were performed with a portable vertical Doppler sounder. The beats between a reference signal and the one reflected from the ionosphere were subjected to spectral analysis, which allowed identifying the principal mode of the Doppler frequency shift and establishing time dependences of that frequency shift . An ionosonde located nearby was used for monitoring the underlying state of the ionosphere.Findings. The measurements performed with the vertical Doppler sounder near the launch site of the medium-lift Kosmos rocket have allowed obtaining first estimates for the principal parameters of the ionospheric holes arising in the F-region along the vehicle trajectory, as well as for the accompanying quasi-periodic variations in the electron density. The spatial scale sizes of the holes have been found to be in excess of 300 km, while the electron density reductions may attain ≈ 50 %. These results are in agreement with the data obtained by international researchers for effects from heavy- and super heavy-lift launch vehicles. Also, note that the types of propellant differed significantly. The propagation velocity of the hole’s front edge was estimated to be ≈ 140 m/s. The hole formation was accompanied by quasi-periodic variations in the Doppler frequency shift as a result of radar signal scattering from the electron density fluctuations produced by propagating atmospheric gravity- and infrasonic waves. The atmospheric gravity waves showed periods in the range from 7 to 20 minutes, and the infrasonic waves had a period close to 2 min. The amplitudes of quasi-periodic electron density variations were estimated for the two modes to be ≈ 0.3−1.5 % and≈ 0.02− 0.03 %, respectively.Conclusions. Medium-lift launch vehicles (mass of a few hundred tons) are capable of forming ionospheric ‘holes’ of several hundred kilometers in size and of reducing the electron density in the F-region by a factor greater than 2.Keywords: Kosmos type rocket, ionosphere, Doppler frequency shift, ionospheric hole, disturbance parameters, electron density, wave disturbancesManuscript submitted 01.09.2021Radio phys. radio astron. 2022, 27(1): 026-037REFERENCES1. ADUSHKIN, V. V., KOZLOV, S. I. and PETROV, A. V., eds., 2000. Th e environmental problems and the risks of rocket-space technology impact on the natural environment: Handbook. Moscow, Russia: Ankil Publ. (in Russian).2. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Eff ects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).3. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, New York: CRC Press.4. ADUSHKIN, V. V., KOZLOV, S. I. and SIL'NIKOV, M. V., eds., 2016. Rocket's environmental impact. Moscow, Russia: GEOS Publ. (in Russian).5. BOOKER, H. G., 1961. A local reduction of F-region ionization due to missile transit. J. Geophys. Res. vol. 66, is. 4, pp. 1073-1079. DOI: https://doi.org/10.1029/JZ066i004p010736. JACKSON, J. E., WHALE, H. A. and BAUER, S. J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. vol. 67, is. 5, pp. 2059-2061. DOI: https://doi.org/10.1029/JZ067i005p020597. FELKER, J. K. and ROBERTS, W. T., 1966. Ionospheric rarefaction following rocket transit. J. Geophys. Res. vol. 71, is. 19, pp. 4692-4694. DOI: https://doi.org/10.1029/JZ071i019p046928. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science. vol. 187, is. 4174, pp. 343-346. DOI: https://doi.org/10.1126/science.187.4174.3439. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res. vol. 80, is. 16, pp. 2217-2228. DOI: https://doi.org/10.1029/JA080i016p0221710. KARLOV, V. D., KOZLOV, S. I. and TKACHEV, G. N., 1980. Large-scale disturbances of the ionosphere occurring during the fl ight of a rocket with a working engine. Cosmic Research. vol. 18, is. 2, pp. 266-277. (in Russian).11. MENDILLO, M., 1981. Th e eff ect of rocket launches on the ionosphere. Adv. Space Res. vol. 1, is. 2, pp. 275-290. DOI: https://doi.org/10.1016/0273-1177(81)90302-112. MENDILLO, M., BAUMGARDNER, J., ALLEN, D. P., FOSTER, J., HOLT, J., ELLIS, G. R. A., KLEKOCIUK, A. and REBER, G., 1987. Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies. Science. vol. 238, is. 4831, pp. 1260-1264. DOI: https://doi.org/10.1126/science.238.4831.126013. MENDILLO, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. vol. 8, is. 1, pp. 51-62. DOI: https://doi.org/10.1016/0273-1177(88)90342-014. BERNHARDT, P. A., KASHIWA, B. A., TEPLEY, C. A. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. I - Neutral Gas Dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 169-181.15. BERNHARDT, P. A., SWARTZ, W. E., KELLY, M. C., SULZER, M., P. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. II - Plasma dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 183-198.16. STONE, M. L., BIRD, L. E. and BALSER, M. A., 1964. A Faraday rotation measurement on the ionospheric perturbation produced by a burning rocket. J. Geophys. Res. vol. 69, is. 5, pp. 971-978. DOI: https://doi.org/10.1029/JZ069i005p0097117. BERNHARDT, P. A., BALLENTHIN, J. O., BAUMGARDNER, J. L., BHATT, A., BOYD, I. D., BURT, J. M., CATON, R. G., COSTER, A., ERICKSON, P. J., HUBA, J. D., EARLE, G. D., KAPLAN, C. R., FOSTER, J. C., GROVES, K. M., HAASER, R. A., HEELIS, R. A., HUNTON, D. E., HYSELL, D. L., KLENZING, J. H., LARSEN, M. F., LIND, F. D., PEDERSEN, T. R., PFAFF, R. F., STONEBACK, R. A., RODDY, P. A., RODRIQUEZ, S. P., SAN ANTONIO, G. S., SCHUCK, P. W., SIEFRING, C. L., SELCHER, C. A., SMITH, S. M., TALAAT, E. R., THOMASON, J. F., TSUNODA, R. T. and VARNEY, R. H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci. vol. 40, no. 5, pp. 1267-1286. DOI: https://doi.org/10.1109/TPS.2012.218581418. NAKASHIMA, Y. and HEKI, K., 2014. Ionospheric Hole Made by the 2012 North Korean Rocket Observed with a Dense GNSS Array in Japan. Radio Sci. vol. 49, is. 7, pp. 497-505. DOI: https://doi.org/10.1002/2014RS00541319. ZINN, J., SUTHERLAND, C. D., STONE, S. N., DUNCAN, L. M. and BEHNKE, R., 1982. Ionospheric eff ects of rocket exhaust products - HEAO-C and Skylab. J. Atmos. Terr. Phys. vol. 44, is. 12, pp. 1143-1171. DOI: https://doi.org/10.1016/0021-9169(82)90025-320. WAND, R. H. and MENDILLO, M., 1984. Incoherent scatter observations of an artifi cially modifi ed ionosphere. J. Geophys. Res. Space Phys. vol. 89, is. A1, pp. 203-215. DOI: https://doi.org/10.1029/JA089iA01p0020321. GORELY, S. I., LAMPEY, V. K. and NIKOL'SKIY, A. V., 1994. Ionospheric eff ects of spacecraft launches. Geomagnetizm i aeronomiya. vol. 34, is. 3, pp. 158-161. (in Russian).22. AKIMOV, V. F., KALININ, YU. K., PLATONOV, T. D., TULINOVA, G. G. and SHUSTOV, E. I., 2000. Th e eff ect of ballistic missile trail development in the midlatitude ionosphere. Geomagn. Aeron. vol. 40, is. 4, pp. 537-540.23. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagn. Aeron. vol. 44, is. 4, pp. 476-491.24. BRYUNELLI, B. E. and NAMGALADZE, A. A., 1988. Physics of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).25. SCHUNK, R. W. and NAGY, A., 2009. Ionospheres: Physics, Plasma Physics, and Chemistry. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO978051163534226. LI, G., NING, B., ABDU, M. A., WANG, C., OTSUKA, Y., WAN, W., LEI, J., NISHIOKA, M., TSUGAWA, T., HU, L., YANG, G. and YAN, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci. vol. 5, is. 1, id. 11. DOI: https://doi.org/10.1186/s40645-018-0172-y27. SSESSANGA, N., KIM, Y. H., CHOI, B. and CHUNG, J.-K., 2018. Th e 4D‐var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere. J. Geophys. Res. Space Phys. vol. 123, is. 3, pp. 2315-2326. DOI: https://doi.org/10.1002/2017JA02459628. ZHU, J., FANG, H., XIA, F., WAN, T. and TAN, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys. vol. 2019, id. 7935067. DOI: https://doi.org/10.1155/2019/793506729. SAVASTANO, G., KOMJATHY, A., SHUME, E., VERGADOS, P., RAVANELLI, M., VERKHOGLYADOVA, O., MENG, X. and CRESPI, M., 2019. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. vol. 11, is. 14, id. 1734. DOI: https://doi.org/10.3390/rs1114173430. BOWDEN, G. W., LORRAIN, P. and BROWN, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys. vol. 125, is. 6. id. e2020JA027836. DOI: https://doi.org/10.1029/2020JA02783631. SAHA, K., DE, B. K., PAUL, B. and GUHA, A., 2020. Satellite launch vehicle eff ect on the Earth's lower ionosphere: A case study. Adv. Space Res. vol. 65, is. 11, pp. 2507-2514. DOI: https://doi.org/10.1016/j.asr.2020.02.02632. ZHU, J. and FANG, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res. vol. 65, is. 3, pp. 933-942. DOI: https://doi.org/10.1016/j.asr.2019.10.02833. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV, O. F., 2013. Th e V. N. Karazin Kharkiv National University Radio Physical Observatory - the tool for ionosphere monitoring in space experiments. In: S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project «Ionosat-Micro». Kyiv, Ukraine: Academperiodika Publ., pp. 160-182. (in Russian).34. DAVIES, K., 1990. Ionospheric radio. London: Peter Peregrinus Ltd. DOI: https://doi.org/10.1049/PBEW031E35. CHERNOGOR, L. F., 2013. Physical eff ects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).36. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves - Th eir Generation and Propagation (Vol. 2 of Developments in Atmospheric Science). New York: Elsevier Scientifi c Pub. Co.37. MA, X., FANG, H., WANG, S. and CHANG, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci. vol. 56, no. 4, id. e2020RS007183. DOI: https://doi.org/10.1029/2020RS007183 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2023 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1376 |
| work_keys_str_mv |
AT chernogorlf largescalereductionsintheelectrondensityofionosphericfregionobservablealongrockettrajectoriesatlaunch AT chernogorlf velikomasštabníznižennâkoncentraciíelektronivufoblastijonosferivzdovžtraêktoríístartuûčoíraketi |
| first_indexed |
2025-12-02T15:33:48Z |
| last_indexed |
2025-12-02T15:33:48Z |
| _version_ |
1851756935588610048 |
| spelling |
rpra-journalorgua-article-13762023-06-20T14:13:38Z LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH ВЕЛИКОМАСШТАБНІ ЗНИЖЕННЯ КОНЦЕНТРАЦIЇ ЕЛЕКТРОНIВ У F-ОБЛАСТI ЙОНОСФЕРИ ВЗДОВЖ ТРАЄКТОРІЇ СТАРТУЮЧОЇ РАКЕТИ Chernogor, L. F. Purpose. The object of the study are electron density depletions (‘holes’) occurring in the ionospheric F-region under the action of rocket exhaust products. The purpose is to present and discuss the results of observations concerning the ionospheric holes that were detected in the course of a number of launches of medium-lift Kosmos vehicles from the Kapustin Yar spaceport. Neither that cosmodrome, nor the rocket type had been subjects of similar analysis before.Design/methodology/approach. The observations at the Kapustin Yar cosmodrome were performed with a portable vertical Doppler sounder. The beats between a reference signal and the one reflected from the ionosphere were subjected to spectral analysis, which allowed identifying the principal mode of the Doppler frequency shift and establishing time dependences of that frequency shift . An ionosonde located nearby was used for monitoring the underlying state of the ionosphere.Findings. The measurements performed with the vertical Doppler sounder near the launch site of the medium-lift Kosmos rocket have allowed obtaining first estimates for the principal parameters of the ionospheric holes arising in the F-region along the vehicle trajectory, as well as for the accompanying quasi-periodic variations in the electron density. The spatial scale sizes of the holes have been found to be in excess of 300 km, while the electron density reductions may attain ≈ 50 %. These results are in agreement with the data obtained by international researchers for effects from heavy- and super heavy-lift launch vehicles. Also, note that the types of propellant differed significantly. The propagation velocity of the hole’s front edge was estimated to be ≈ 140 m/s. The hole formation was accompanied by quasi-periodic variations in the Doppler frequency shift as a result of radar signal scattering from the electron density fluctuations produced by propagating atmospheric gravity- and infrasonic waves. The atmospheric gravity waves showed periods in the range from 7 to 20 minutes, and the infrasonic waves had a period close to 2 min. The amplitudes of quasi-periodic electron density variations were estimated for the two modes to be ≈ 0.3−1.5 % and≈ 0.02− 0.03 %, respectively.Conclusions. Medium-lift launch vehicles (mass of a few hundred tons) are capable of forming ionospheric ‘holes’ of several hundred kilometers in size and of reducing the electron density in the F-region by a factor greater than 2.Keywords: Kosmos type rocket, ionosphere, Doppler frequency shift, ionospheric hole, disturbance parameters, electron density, wave disturbancesManuscript submitted 01.09.2021Radio phys. radio astron. 2022, 27(1): 026-037REFERENCES1. ADUSHKIN, V. V., KOZLOV, S. I. and PETROV, A. V., eds., 2000. Th e environmental problems and the risks of rocket-space technology impact on the natural environment: Handbook. Moscow, Russia: Ankil Publ. (in Russian).2. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Eff ects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).3. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, New York: CRC Press.4. ADUSHKIN, V. V., KOZLOV, S. I. and SIL'NIKOV, M. V., eds., 2016. Rocket's environmental impact. Moscow, Russia: GEOS Publ. (in Russian).5. BOOKER, H. G., 1961. A local reduction of F-region ionization due to missile transit. J. Geophys. Res. vol. 66, is. 4, pp. 1073-1079. DOI: https://doi.org/10.1029/JZ066i004p010736. JACKSON, J. E., WHALE, H. A. and BAUER, S. J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. vol. 67, is. 5, pp. 2059-2061. DOI: https://doi.org/10.1029/JZ067i005p020597. FELKER, J. K. and ROBERTS, W. T., 1966. Ionospheric rarefaction following rocket transit. J. Geophys. Res. vol. 71, is. 19, pp. 4692-4694. DOI: https://doi.org/10.1029/JZ071i019p046928. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science. vol. 187, is. 4174, pp. 343-346. DOI: https://doi.org/10.1126/science.187.4174.3439. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res. vol. 80, is. 16, pp. 2217-2228. DOI: https://doi.org/10.1029/JA080i016p0221710. KARLOV, V. D., KOZLOV, S. I. and TKACHEV, G. N., 1980. Large-scale disturbances of the ionosphere occurring during the fl ight of a rocket with a working engine. Cosmic Research. vol. 18, is. 2, pp. 266-277. (in Russian).11. MENDILLO, M., 1981. Th e eff ect of rocket launches on the ionosphere. Adv. Space Res. vol. 1, is. 2, pp. 275-290. DOI: https://doi.org/10.1016/0273-1177(81)90302-112. MENDILLO, M., BAUMGARDNER, J., ALLEN, D. P., FOSTER, J., HOLT, J., ELLIS, G. R. A., KLEKOCIUK, A. and REBER, G., 1987. Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies. Science. vol. 238, is. 4831, pp. 1260-1264. DOI: https://doi.org/10.1126/science.238.4831.126013. MENDILLO, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. vol. 8, is. 1, pp. 51-62. DOI: https://doi.org/10.1016/0273-1177(88)90342-014. BERNHARDT, P. A., KASHIWA, B. A., TEPLEY, C. A. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. I - Neutral Gas Dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 169-181.15. BERNHARDT, P. A., SWARTZ, W. E., KELLY, M. C., SULZER, M., P. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. II - Plasma dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 183-198.16. STONE, M. L., BIRD, L. E. and BALSER, M. A., 1964. A Faraday rotation measurement on the ionospheric perturbation produced by a burning rocket. J. Geophys. Res. vol. 69, is. 5, pp. 971-978. DOI: https://doi.org/10.1029/JZ069i005p0097117. BERNHARDT, P. A., BALLENTHIN, J. O., BAUMGARDNER, J. L., BHATT, A., BOYD, I. D., BURT, J. M., CATON, R. G., COSTER, A., ERICKSON, P. J., HUBA, J. D., EARLE, G. D., KAPLAN, C. R., FOSTER, J. C., GROVES, K. M., HAASER, R. A., HEELIS, R. A., HUNTON, D. E., HYSELL, D. L., KLENZING, J. H., LARSEN, M. F., LIND, F. D., PEDERSEN, T. R., PFAFF, R. F., STONEBACK, R. A., RODDY, P. A., RODRIQUEZ, S. P., SAN ANTONIO, G. S., SCHUCK, P. W., SIEFRING, C. L., SELCHER, C. A., SMITH, S. M., TALAAT, E. R., THOMASON, J. F., TSUNODA, R. T. and VARNEY, R. H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci. vol. 40, no. 5, pp. 1267-1286. DOI: https://doi.org/10.1109/TPS.2012.218581418. NAKASHIMA, Y. and HEKI, K., 2014. Ionospheric Hole Made by the 2012 North Korean Rocket Observed with a Dense GNSS Array in Japan. Radio Sci. vol. 49, is. 7, pp. 497-505. DOI: https://doi.org/10.1002/2014RS00541319. ZINN, J., SUTHERLAND, C. D., STONE, S. N., DUNCAN, L. M. and BEHNKE, R., 1982. Ionospheric eff ects of rocket exhaust products - HEAO-C and Skylab. J. Atmos. Terr. Phys. vol. 44, is. 12, pp. 1143-1171. DOI: https://doi.org/10.1016/0021-9169(82)90025-320. WAND, R. H. and MENDILLO, M., 1984. Incoherent scatter observations of an artifi cially modifi ed ionosphere. J. Geophys. Res. Space Phys. vol. 89, is. A1, pp. 203-215. DOI: https://doi.org/10.1029/JA089iA01p0020321. GORELY, S. I., LAMPEY, V. K. and NIKOL'SKIY, A. V., 1994. Ionospheric eff ects of spacecraft launches. Geomagnetizm i aeronomiya. vol. 34, is. 3, pp. 158-161. (in Russian).22. AKIMOV, V. F., KALININ, YU. K., PLATONOV, T. D., TULINOVA, G. G. and SHUSTOV, E. I., 2000. Th e eff ect of ballistic missile trail development in the midlatitude ionosphere. Geomagn. Aeron. vol. 40, is. 4, pp. 537-540.23. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagn. Aeron. vol. 44, is. 4, pp. 476-491.24. BRYUNELLI, B. E. and NAMGALADZE, A. A., 1988. Physics of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).25. SCHUNK, R. W. and NAGY, A., 2009. Ionospheres: Physics, Plasma Physics, and Chemistry. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO978051163534226. LI, G., NING, B., ABDU, M. A., WANG, C., OTSUKA, Y., WAN, W., LEI, J., NISHIOKA, M., TSUGAWA, T., HU, L., YANG, G. and YAN, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci. vol. 5, is. 1, id. 11. DOI: https://doi.org/10.1186/s40645-018-0172-y27. SSESSANGA, N., KIM, Y. H., CHOI, B. and CHUNG, J.-K., 2018. Th e 4D‐var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere. J. Geophys. Res. Space Phys. vol. 123, is. 3, pp. 2315-2326. DOI: https://doi.org/10.1002/2017JA02459628. ZHU, J., FANG, H., XIA, F., WAN, T. and TAN, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys. vol. 2019, id. 7935067. DOI: https://doi.org/10.1155/2019/793506729. SAVASTANO, G., KOMJATHY, A., SHUME, E., VERGADOS, P., RAVANELLI, M., VERKHOGLYADOVA, O., MENG, X. and CRESPI, M., 2019. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. vol. 11, is. 14, id. 1734. DOI: https://doi.org/10.3390/rs1114173430. BOWDEN, G. W., LORRAIN, P. and BROWN, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys. vol. 125, is. 6. id. e2020JA027836. DOI: https://doi.org/10.1029/2020JA02783631. SAHA, K., DE, B. K., PAUL, B. and GUHA, A., 2020. Satellite launch vehicle eff ect on the Earth's lower ionosphere: A case study. Adv. Space Res. vol. 65, is. 11, pp. 2507-2514. DOI: https://doi.org/10.1016/j.asr.2020.02.02632. ZHU, J. and FANG, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res. vol. 65, is. 3, pp. 933-942. DOI: https://doi.org/10.1016/j.asr.2019.10.02833. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV, O. F., 2013. Th e V. N. Karazin Kharkiv National University Radio Physical Observatory - the tool for ionosphere monitoring in space experiments. In: S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project «Ionosat-Micro». Kyiv, Ukraine: Academperiodika Publ., pp. 160-182. (in Russian).34. DAVIES, K., 1990. Ionospheric radio. London: Peter Peregrinus Ltd. DOI: https://doi.org/10.1049/PBEW031E35. CHERNOGOR, L. F., 2013. Physical eff ects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).36. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves - Th eir Generation and Propagation (Vol. 2 of Developments in Atmospheric Science). New York: Elsevier Scientifi c Pub. Co.37. MA, X., FANG, H., WANG, S. and CHANG, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci. vol. 56, no. 4, id. e2020RS007183. DOI: https://doi.org/10.1029/2020RS007183 Предмет і мета роботи. Предметом дослідження є область зниженої концентрації електронів (іоносферна «діра»), яка виникає у F-області йоносфери під дією вихлопного струменя ракети. Метою роботи є виклад результатів спостереження й аналізу йоносферних «дір», утворених впродовж старту з космодрому Капустін Яр і польоту ракет «Космос» середнього класу важкості. Раніше для цього космодрому та типу ракети такі дослідження не виконувалися.Методи і методологія. Наведено результати спостережень, що виконувались на космодромі Капустін Яр за допомогою рухомого доплерівського радара вертикального зондування. Сигнал биття між прийнятим й опорним сигналами піддавався спектральній обробці, за результатами якої виділено основну моду доплерівського зміщення частоти та побудовано часові залежності цієї величини. Для загального контролю за станом іоносфери використовувався розташований поблизу іонозонд.Результати.За допомогою доплерівського радара вертикального зондування, що був розташований поблизу місця старту ракети середнього класу важкості «Космос», вперше визначено основні параметри «діри» у F-області йоносфери та супутніх квазіперіодичних варіацій концентрації електронів. Встановлено, що розмір іоносферних «дір» був не меншим за 300 км, а зниження концентрації електронів сягало ≈ 50 %. Така оцінка добре узгоджується з даними закордонних дослідників, які спостерігали ефекти від стартів ракет важкого та надважкого класів. Важливо, що ракетне паливо, використане для цих стартів, істотно відрізнялося. Швидкість поширення фронту «діри» становила близько 140 м/с. Утворення «діри» супроводжувалося квазіперіодичними варіаціями доплерівського зміщення частоти внаслідок розсіяння радарного сигналу на флуктуаціях електронної концентрації при поширенні атмосферних гравітаційних та інфразвукових хвиль. Для атмосферних гравітаційних хвиль значення періоду коливалося від 7 до 20 хв, а для інфразвуку він становив близько 2 хв. Відносні амплітуди квазіперіодичних збурень електронної концентрації відповідно складали ≈ 0.3 - 1.5 % та ≈ 0.02-0.03 %.Висновки. Ракети середнього класу (маса — сотні тонн) здатні створювати «діри» в іоносфері розміром у декілька сотень кілометрів зі зменшенням концентрації електронів у F-області більше ніж удвічі.Ключові слова: ракета «Космос», іоносфера, доплерівське зміщення частоти, іоносферна «діра», параметри «діри», концентрація електронів, хвильові збуренняСтаття надійшла до редакції 01.09.2021Radio phys. radio astron. 2022, 27(1): 026-037БІБЛІОГРАФІЧНИЙ СПИСОК1. Экологические проблемы и риски воздействий ракетно-космической техники на окружающую природную среду: Справочное пособие. Под ред. В. В. Адушкина, С. И. Козлова, А. В. Петрова. Москва: Анкил, 2000. 640 с.2. Черногор Л. Ф. Радиофизические и геомагнитные эффекты стартов ракет: монография. Харьков: ХНУ имени В. Н. Каразина, 2009. 386 с.3. Chernogor L. F. and Blaunstein N. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press, 2013. 542 p.4. Воздействие ракетно-космической техники на окружающую природную среду. Под ред. В. В. Адушкина, С. И. Козлова, М. В. Сильникова. Москва: ГЕОС, 2016. 795 c.5. Booker H. G. A local reduction of F-region ionization due to missile transit. J. Geophys. Res. 1961. Vol. 66, Is. 4. P. 1073—1079. DOI: 10.1029/JZ066i004p010736. Jackson J. E., Whale H. A., and Bauer S. J. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. 1962. Vol. 67, Is. 5. P. 2059—2061. DOI: 10.1029/JZ067i005p020597. Felker J. K. and Roberts W. T. Ionospheric rarefaction following rocket transit. J. Geophys. Res. 1966. Vol. 71, Is. 19. P. 4692—4694. DOI: 10.1029/JZ071i019p046928. Mendillo M., Hawkins G. S., and Klobuchar J. A. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science. 1975. Vol. 187, Is. 4174. P. 343—346. DOI: 10.1126/science.187.4174.3439. Mendillo M., Hawkins G. S., and Klobuchar J. A. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res. 1975. Vol. 80, Is. 16. P. 2217—2228. DOI:10.1029/JA080i016p0221710. Карлов В. Д., Козлов С. И., Ткачев Г. Н. Крупномасштабные возмущения в ионосфере, возникающие при полете ракеты с работающим двигателем. Космические исследования. 1980. Т. 18, No 2. С. 266—277.11. Mendillo M. The effect of rocket launches on the ionosphere. Adv. Space Res. 1981. Vol. 1, Is. 2. P. 275—290. DOI: 10.1016/0273-1177(81)90302-112. Mendillo M., Baumgardner J., Allen D. P., Foster J., Holt J., Ellis G. R. A., Klekociuk A., and Reber G. Spacelab-2 Plasma Depletion Experiments for Iionospheric and Radio Astronomical Studies. Science. 1987. Vol. 238, Is. 4831. P. 1260—1264. DOI: 10.1126/science.238.4831.126013. Mendillo M. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. 1988. Vol. 8, Is. 1. P. 51—62. DOI: 10.1016/0273-1177(88)90342-014. Bernhardt P. A., Kashiwa B. A., Tepley C. A., and Noble S. T. Spacelab 2 Upper Atmospheric Modification Experiment Over Arecibo. I — Neutral Gas Dynamics. Astrophys. Lett. Commun. 1988. Vol. 27, No. 3. P. 169—181.15. Bernhardt P. A., Swartz W. E., Kelly M. C., Sulzer M. P., and Noble S. T. Spacelab 2 Upper Atmospheric Modification Experiment Over Arecibo. II — Plasma dynamics. Astrophys. Lett. Commun. 1988. Vol. 27, No. 3. P. 183—198.16. Stone M. L., Bird L. E., and Balser M. A Faraday rotation measurement on the ionospheric perturbation produced by a burning rocket. J. Geophys. Res. 1964. Vol. 69, Is. 5. P. 971—978. DOI: 10.1029/JZ069I005P0097117. Bernhardt P. A., Ballenthin J. O., Baumgardner J. L., Bhatt A., Boyd I. D., Burt J. M., Caton R. G., Coster A., Erickson P. J., Huba J. D., Earle G. D., Kaplan C. R., Foster J. C., Groves K. M., Haaser R. A., Heelis R. A., Hunton D. E., Hysell D. L., Klenzing J. H., Larsen M. F., Lind F. D., Pedersen T. R., Pfaff R. F., Stoneback R. A., Roddy P. A., Rodriquez S. P., San Antonio G. S., Schuck P. W., Siefring C. L., Selcher C. A., Smith S. M., Talaat E. R., Thomason J. F., Tsunoda R. T., and Varney R. H. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci. 2012. Vol. 40, No. 5. P. 1267—1286. DOI: 10.1109/TPS.2012.218581418. Nakashima Y. and Heki K. Ionospheric Hole Made by the 2012 North Korean Rocket Observed with a Dense GNSS Array in Japan. Radio Sci. 2014. Vol. 49, Is. 7. P. 497—505. DOI: 10.1002/2014RS00541319. Zinn J., Sutherland C. D., Stone S. N., Duncan L. M., and Behnke R. Ionospheric effects of rocket exhaust products — HEAO-Cand Skylab. J. Atmos. Terr. Phys. 1982. Vol. 44, Is. 12. P. 1143—1171. DOI: 10.1016/0021-9169(82)90025-320. Wand R. H. and Mendillo M. Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res. Space Phys. 1984. Vol. 89, Is. A1. P. 203—215. DOI: 10.1029/JA089iA01p0020321. Горелый С. И., Лампей В. К., Никольский А. В. Ионосферные эффекты стартов космических аппаратов. Геомагнетизм и аэрономия. 1994. Т. 34, No 3. С. 158—161.22. Акимов В. Ф., Калинин Ю. К., Платонов Т. Д., Тулинова Г. Г., Шустов Э. И. Эффект развития следа баллистической ракеты в среднеширотной ионосфере. Геомагнетизм и аэрономия. 2000. Т. 40, No 4. С. 137—140.23. Бурмака В. П., Таран В. И., Черногор Л. Ф. Волновые возмущения в ионосфере, сопутствовавшие стартам ракет на фоне естественных переходных процессов. Геомагнетизм и аэрономия. 2004. Т. 44, No 4. С. 518—534.24. Брюнелли Б. Е., Намгаладзе А. А. Физика ионосферы. Москва: Наука, 1988. 528 с.25. Schunk R. and Nagy A. Ionospheres: Physics, Plasma Physics, and Chemistry. New York: Cambridge University Press, 2009. 628 p.26. Li G., Ning B., Abdu M., Wang C., Otsuka Y., Wan W., Lei J., Nishioka M., Tsugawa T., Hu L., Yang G., and Yan C. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci. 2018. Vol. 5, Is. 1. id. 11. DOI: 10.1186/s40645-018-0172-y27. Ssessanga N., Kim Y. H., Choi B., and Chung J.-K. The 4D‐var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere. J. Geophys. Res. Space Phys. 2018. Vol. 123, Is. 3. P. 2315—2326. DOI: 10.1002/2017JA02459628. Zhu J., Fang H., Xia F., Wan T., and Tan X. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys. 2019. Vol. 2019. id. 7935067. DOI: 10.1155/2019/793506729. Savastano G., Komjathy A., Shume E., Vergados P., Ravanelli M., Verkhoglyadova O., Meng X., and Crespi M. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. 2019. Vol. 11, Is. 14. id. 1734. DOI: 10.3390/rs1114173430. Bowden G. W., Lorrain P., and Brown M. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys. 2020. Vol. 125, Is. 6. id. e2020JA027836. DOI: 10.1029/ 2020JA02783631. Saha K., De B. K., Paul B., and Guha A. Satellite launch vehicle effect on the Earth’s lower ionosphere: A case study. Adv. Space Res. 2020. Vol. 65, Is. 11. P. 2507—2514. DOI: 10.1016/j.asr.2020.02.02632. Zhu J. and Fang H. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res. 2020. Vol. 65, Is. 3. P. 933—942. DOI: 10.1016/j.asr.2019.10.02833. Черногор Л. Ф., Гармаш К. П., Поднос В. А., Тырнов О. Ф. Радиофизическая обсерватория Харьковского национального университета имени В. Н. Каразина — средство для мониторинга ионосферы в космических экспериментах. Под ред. С. А. Засухи, О. П. Федорова. Космический проект «Ионосат-Микро». Киев: Академпериодика, 2013. С. 160—182.34. Davies K. Ionospheric radio. London: Peter Peregrinus Ltd., 1990. 603 p.35. Черногор Л. Ф. Физические эффекты солнечных затмений в атмосфере и геокосмосе: монография. Харьков: ХНУ имени В. Н. Каразина, 2013. 480 с.36. Госсард Э. Э., Хук У. Х. Волны в атмосфере. Москва: Мир, 1978. 532 с.37. Ma X., Fang H., Wang S., and Chang S. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci. 2021. Vol. 56, No. 4. id. e2020RS007183. DOI: 10.1029/2020RS007183 Видавничий дім «Академперіодика» 2023-06-13 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1376 10.15407/rpra27.01.026 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 1 (2022); 26 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 1 (2022); 26 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 1 (2022); 26 2415-7007 1027-9636 10.15407/rpra27.01 uk http://rpra-journal.org.ua/index.php/ra/article/view/1376/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY |