A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS

Subject and Purpose. The existing interest in nanosized magnetic materials requires equipment for express post-synthesis measurements of magnetic properties of these nanostructures in such a way as to exclude any mechanical displacement of the sample. Although there exist plenty of methods and devic...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Sova, K. Yu., Vakula, A. S., Chernyakov, E. I., Tarapov, S. I.
Format: Article
Language:English
Published: Видавничий дім «Академперіодика» 2023
Subjects:
Online Access:http://rpra-journal.org.ua/index.php/ra/article/view/1378
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Radio physics and radio astronomy

Institution

Radio physics and radio astronomy
id rpra-journalorgua-article-1378
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2023-06-20T14:13:38Z
collection OJS
language English
topic
spellingShingle
Sova, K. Yu.
Vakula, A. S.
Chernyakov, E. I.
Tarapov, S. I.
A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
topic_facet

format Article
author Sova, K. Yu.
Vakula, A. S.
Chernyakov, E. I.
Tarapov, S. I.
author_facet Sova, K. Yu.
Vakula, A. S.
Chernyakov, E. I.
Tarapov, S. I.
author_sort Sova, K. Yu.
title A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
title_short A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
title_full A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
title_fullStr A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
title_full_unstemmed A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS
title_sort string magnetometer using the method of small perturbations
title_alt СТРУННИЙ МАГНІТОМЕТР ІЗ ЗАСТОСУВАННЯМ МЕТОДУ МАЛИХ ЗБУРЕНЬ
description Subject and Purpose. The existing interest in nanosized magnetic materials requires equipment for express post-synthesis measurements of magnetic properties of these nanostructures in such a way as to exclude any mechanical displacement of the sample. Although there exist plenty of methods and devices for studying magnetic properties of materials, the development of novel schemes based on the known techniques for examining properties of magnetic nanomaterials, for example magnetic nanopowders, is a hot problem. The measurement equipment of the sort will detect changes in the magnetic properties of materials over time and under the influence of various factors, such as temperature, external magnetic fields, stabilizing substances.Method and Methodology. The developed setup for registering magnetic hysteresis loops is based on the method of small perturbations performed by an alternating magnetic field. The devised scheme combines conventional physical principles of both hysterometers and vibrating-sample magnetometers.Results. With the aid of the developed setup, magnetic hysteresis loops of  La0.775Sr0.225MnO3 nanopowder have been obtained and compared with the data provided by the well-known technique. A good agreement was observed. The measurement error was 10%.Conclusion. The suggested scheme can be used for the express registration of magnetic hysteresis loops of miscellaneous magnetic materials of various compositions, including nanoscale magnets.Keywords: string magnetometer, magnetic hysteresis loop, magnetic nanoparticles, magnetizationManuscript submitted 20.12.2021Radio phys. radio astron. 2022, 27(1): 048-052REFERENCES 1. Chechernikov, V.I., 1969. Magnetic measurements. 2nd ed. Ye.I. Kondorskii ed. Moscow: University publishing center (in Russian).  2. Maksimochkin, I., Trukhin, V.I., Garifullin, N.M., Khasanov, N.A., 2003. An Automated High-Sensitivity Vibrating-Coil Magnetometer. Instrum. Exp. Tech., 46(5), pp. 702-707. DOI: https://doi.org/10.1023/A:1026062310118  3. Shin, K.H., Park, K.I., Kim, Y., Sa-Gong, G., 2004. Vibrating sample magnetometer using a multilayer piezoelectric actuator. Phys. Status Solidi B, 241(7), pp. 1633-1636. DOI: https://doi.org/10.1002/pssb.200304666  4. Timofeev, V.P., Khvostov, S.S., Tsoi, G.M., Shny, V.I., 1992. UHF SQUID-magnetometer at 77 K. Cryogenics (Supplement ICEC 14 Proceedings), 32, pp. 517-520. DOI: https://doi.org/10.1016/0011-2275(92)90219-Z  5. He, D.F., Yoshizawa, M., 2003. Mobile high-Tc DC SQUID magnetometer. Physica B, 329-333, pp. 1489-1490. DOI: https://doi.org/10.1016/S0921-4526(02)02403-1  6. Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J.C., Moreno, L., Lere, M., Spottorno, J., Giacomone, F., Fernández, J.F., Hernando, A., García, M.A., 2018. A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum., 89(3), pp. 034707 (6 p.). DOI: https://doi.org/10.1063/1.5017708  7. Rubakhin, L.B., Rubakhin, V.B., 1976. String magnetometer. USSR Pat. 509849 (in Russian).  8. Rubakhin, L.B., Rubakhin, V.B., 1979. String magnetometer. USSR Pat. 664128 (in Russian).  9. Panfi lov, А.S., Pushkar, Yu.Ya., 1998. Experimental methods for studying the dependence of the magnetic susceptibility of solids on the atomic volume. Fizika i tekhnika vysokikh davleniy, 8(3), pp. 5-28 (in Russian).  10. Poole, C., 1997. Electron Spin Resonance: A comprehensive treatise on experimental techniques. New York: Dover Publ.  11. Gurevich, A.G., Melkov, G.A., 1996. Magnetization Oscillations and Waves. Boca Raton, N.Y., L., Tokyo: CRC Press.  12. Landau, L.D., Lifshits, E.M., 1987. Th eory of Elasticity. Moscow: Nauka Publ. (Vol. VII) (in Russian).  13. Shlapa, Yu.Yu., Solopan, S.A., Belous, A.G., 2018. Magnetothermic Eff ect in Core/Shell Nanocomposite (La,Sr)MnO3/SiO2. Th eor. Exp. Chem., 54(2), pp. 1-7. DOI: https://doi.org/10.1007/s11237-018-9551-0 
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1378
work_keys_str_mv AT sovakyu astringmagnetometerusingthemethodofsmallperturbations
AT vakulaas astringmagnetometerusingthemethodofsmallperturbations
AT chernyakovei astringmagnetometerusingthemethodofsmallperturbations
AT tarapovsi astringmagnetometerusingthemethodofsmallperturbations
AT sovakyu strunnijmagnítometrízzastosuvannâmmetodumalihzburenʹ
AT vakulaas strunnijmagnítometrízzastosuvannâmmetodumalihzburenʹ
AT chernyakovei strunnijmagnítometrízzastosuvannâmmetodumalihzburenʹ
AT tarapovsi strunnijmagnítometrízzastosuvannâmmetodumalihzburenʹ
AT sovakyu stringmagnetometerusingthemethodofsmallperturbations
AT vakulaas stringmagnetometerusingthemethodofsmallperturbations
AT chernyakovei stringmagnetometerusingthemethodofsmallperturbations
AT tarapovsi stringmagnetometerusingthemethodofsmallperturbations
first_indexed 2025-12-02T15:33:52Z
last_indexed 2025-12-02T15:33:52Z
_version_ 1851756935520452608
spelling rpra-journalorgua-article-13782023-06-20T14:13:38Z A STRING MAGNETOMETER USING THE METHOD OF SMALL PERTURBATIONS СТРУННИЙ МАГНІТОМЕТР ІЗ ЗАСТОСУВАННЯМ МЕТОДУ МАЛИХ ЗБУРЕНЬ Sova, K. Yu. Vakula, A. S. Chernyakov, E. I. Tarapov, S. I. Subject and Purpose. The existing interest in nanosized magnetic materials requires equipment for express post-synthesis measurements of magnetic properties of these nanostructures in such a way as to exclude any mechanical displacement of the sample. Although there exist plenty of methods and devices for studying magnetic properties of materials, the development of novel schemes based on the known techniques for examining properties of magnetic nanomaterials, for example magnetic nanopowders, is a hot problem. The measurement equipment of the sort will detect changes in the magnetic properties of materials over time and under the influence of various factors, such as temperature, external magnetic fields, stabilizing substances.Method and Methodology. The developed setup for registering magnetic hysteresis loops is based on the method of small perturbations performed by an alternating magnetic field. The devised scheme combines conventional physical principles of both hysterometers and vibrating-sample magnetometers.Results. With the aid of the developed setup, magnetic hysteresis loops of  La0.775Sr0.225MnO3 nanopowder have been obtained and compared with the data provided by the well-known technique. A good agreement was observed. The measurement error was 10%.Conclusion. The suggested scheme can be used for the express registration of magnetic hysteresis loops of miscellaneous magnetic materials of various compositions, including nanoscale magnets.Keywords: string magnetometer, magnetic hysteresis loop, magnetic nanoparticles, magnetizationManuscript submitted 20.12.2021Radio phys. radio astron. 2022, 27(1): 048-052REFERENCES 1. Chechernikov, V.I., 1969. Magnetic measurements. 2nd ed. Ye.I. Kondorskii ed. Moscow: University publishing center (in Russian).  2. Maksimochkin, I., Trukhin, V.I., Garifullin, N.M., Khasanov, N.A., 2003. An Automated High-Sensitivity Vibrating-Coil Magnetometer. Instrum. Exp. Tech., 46(5), pp. 702-707. DOI: https://doi.org/10.1023/A:1026062310118  3. Shin, K.H., Park, K.I., Kim, Y., Sa-Gong, G., 2004. Vibrating sample magnetometer using a multilayer piezoelectric actuator. Phys. Status Solidi B, 241(7), pp. 1633-1636. DOI: https://doi.org/10.1002/pssb.200304666  4. Timofeev, V.P., Khvostov, S.S., Tsoi, G.M., Shny, V.I., 1992. UHF SQUID-magnetometer at 77 K. Cryogenics (Supplement ICEC 14 Proceedings), 32, pp. 517-520. DOI: https://doi.org/10.1016/0011-2275(92)90219-Z  5. He, D.F., Yoshizawa, M., 2003. Mobile high-Tc DC SQUID magnetometer. Physica B, 329-333, pp. 1489-1490. DOI: https://doi.org/10.1016/S0921-4526(02)02403-1  6. Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J.C., Moreno, L., Lere, M., Spottorno, J., Giacomone, F., Fernández, J.F., Hernando, A., García, M.A., 2018. A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum., 89(3), pp. 034707 (6 p.). DOI: https://doi.org/10.1063/1.5017708  7. Rubakhin, L.B., Rubakhin, V.B., 1976. String magnetometer. USSR Pat. 509849 (in Russian).  8. Rubakhin, L.B., Rubakhin, V.B., 1979. String magnetometer. USSR Pat. 664128 (in Russian).  9. Panfi lov, А.S., Pushkar, Yu.Ya., 1998. Experimental methods for studying the dependence of the magnetic susceptibility of solids on the atomic volume. Fizika i tekhnika vysokikh davleniy, 8(3), pp. 5-28 (in Russian).  10. Poole, C., 1997. Electron Spin Resonance: A comprehensive treatise on experimental techniques. New York: Dover Publ.  11. Gurevich, A.G., Melkov, G.A., 1996. Magnetization Oscillations and Waves. Boca Raton, N.Y., L., Tokyo: CRC Press.  12. Landau, L.D., Lifshits, E.M., 1987. Th eory of Elasticity. Moscow: Nauka Publ. (Vol. VII) (in Russian).  13. Shlapa, Yu.Yu., Solopan, S.A., Belous, A.G., 2018. Magnetothermic Eff ect in Core/Shell Nanocomposite (La,Sr)MnO3/SiO2. Th eor. Exp. Chem., 54(2), pp. 1-7. DOI: https://doi.org/10.1007/s11237-018-9551-0  Предмет і мета роботи. Інтерес виробників наукового обладнання до нанорозмірних магнітних матеріалів вимагає розробки пристроїв для безконтактних експрес-вимірювань їх магнітних властивостей. Незважаючи на безліч відомих методів та пристроїв для вивчення магнітних властивостей наноматеріалів (зокрема, магнітних нанопорошків), розроблення нового устаткування у цій галузі залишається важливим завданням. Такі вимірювальні пристрої дозволять виявляти зміну магнітних властивостей наноматеріалів у часі та під впливом різних факторів — температури, зовнішнього магнітного поля та хімічного впливу стабілізуючих речовин.Методи і методологія роботи. Принцип роботи розробленого авторами устаткування для отримання петель магнітного гістерезису заснований на методі малих збурень з використанням зовнішнього магнітного поля. Розроблений струнний магнітометр поєднує у собі традиційні фізичні принципи роботи гістерометрів і вібромагнітометрів.Результати роботи. За допомогою розробленого устаткування автори отримали петлі магнітного гістерезису нанопорошку La0.775Sr0.225MnO3. Порівняльний аналіз результатів експериментальних досліджень і даних, отриманих за відомоюметодикою, виявив їхню добру узгодженість з похибкою 10 %.Висновок. Розроблений авторами струнний магнітометр може бути використаний для експрес-реєстрації петель магнітного гістерезису магнітних матеріалів різного складу, у тому числі нанорозмірних магнетиків.Ключові слова: струнний магнітометр, петля магнітного гістерезису, намагнічуванняСтаття надійшла до редакції 20.12.2021Radio phys. radio astron. 2022, 27(1): 048-052БІБЛІОГРАФІЧНИЙ СПИСОК 1. Chechernikov, V.I., 1969. Magnetic measurements. 2nd ed. Ye.I. Kondorskii ed. Moscow: University publishing center (in Russian).   2. Maksimochkin, I., Trukhin, V.I., Garifullin, N.M., Khasanov, N.A., 2003. An Automated High-Sensitivity Vibrating-Coil Magnetometer. Instrum. Exp. Tech., 46(5), pp. 702-707. DOI: https://doi.org/10.1023/A:1026062310118   3. Shin, K.H., Park, K.I., Kim, Y., Sa-Gong, G., 2004. Vibrating sample magnetometer using a multilayer piezoelectric actuator. Phys. Status Solidi B, 241(7), pp. 1633-1636. DOI: https://doi.org/10.1002/pssb.200304666  4. Timofeev, V.P., Khvostov, S.S., Tsoi, G.M., Shny, V.I., 1992. UHF SQUID-magnetometer at 77 K. Cryogenics (Supplement ICEC 14 Proceedings), 32, pp. 517-520. DOI: https://doi.org/10.1016/0011-2275(92)90219-Z  5. He, D.F., Yoshizawa, M., 2003. Mobile high-Tc DC SQUID magnetometer. Physica B, 329-333, pp. 1489-1490. DOI: https://doi.org/10.1016/S0921-4526(02)02403-1  6. Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J.C., Moreno, L., Lere, M., Spottorno, J., Giacomone, F., Fernández, J.F., Hernando, A., García, M.A., 2018. A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum., 89(3), pp. 034707 (6 p.). DOI: https://doi.org/10.1063/1.5017708  7. Rubakhin, L.B., Rubakhin, V.B., 1976. String magnetometer. USSR Pat. 509849 (in Russian).  8. Rubakhin, L.B., Rubakhin, V.B., 1979. String magnetometer. USSR Pat. 664128 (in Russian).  9. Panfi lov, А.S., Pushkar, Yu.Ya., 1998. Experimental methods for studying the dependence of the magnetic susceptibility of solids on the atomic volume. Fizika i tekhnika vysokikh davleniy, 8(3), pp. 5-28 (in Russian).  10. Poole, C., 1997. Electron Spin Resonance: A comprehensive treatise on experimental techniques. New York: Dover Publ.  11. Gurevich, A.G., Melkov, G.A., 1996. Magnetization Oscillations and Waves. Boca Raton, N.Y., L., Tokyo: CRC Press.  12. Landau, L.D., Lifshits, E.M., 1987. Th eory of Elasticity. Moscow: Nauka Publ. (Vol. VII) (in Russian).  13. Shlapa, Yu.Yu., Solopan, S.A., Belous, A.G., 2018. Magnetothermic Eff ect in Core/Shell Nanocomposite (La,Sr)MnO3/SiO2. Th eor. Exp. Chem., 54(2), pp. 1-7. DOI: https://doi.org/10.1007/s11237-018-9551-0    Видавничий дім «Академперіодика» 2023-06-13 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1378 10.15407/rpra27.01.048 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 1 (2022); 48 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 1 (2022); 48 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 1 (2022); 48 2415-7007 1027-9636 10.15407/rpra27.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1378/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY