THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR

Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Kuzmichev, I. K., Muzychishin, B. I., Popkov, A. Yu., May, Аlexander V., May, Alexey V.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1380
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1380
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2023-06-20T14:13:38Z
collection OJS
language English
topic
spellingShingle
Kuzmichev, I. K.
Muzychishin, B. I.
Popkov, A. Yu.
May, Аlexander V.
May, Alexey V.
THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
topic_facet

format Article
author Kuzmichev, I. K.
Muzychishin, B. I.
Popkov, A. Yu.
May, Аlexander V.
May, Alexey V.
author_facet Kuzmichev, I. K.
Muzychishin, B. I.
Popkov, A. Yu.
May, Аlexander V.
May, Alexey V.
author_sort Kuzmichev, I. K.
title THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
title_short THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
title_full THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
title_fullStr THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
title_full_unstemmed THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR
title_sort resonant system of a sub-terahertz local oscillator
title_alt РЕЗОНАНСНА СИСТЕМА ГЕТЕРОДИНА СУБТЕРАГЕРЦОВОГО ДІАПАЗОНУ ЧАСТОТ
description Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a × b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume-to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) and the second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%.Design/methodology/approach. The excitation efficiency of higher-order oscillation modes TEM10q in the OR being driven by an incident TE10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation.Findings. As has been shown, in an OR of parameters 2а = 38 mm, R = 78 mm, and L/R = 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i. e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB.Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric oscillation modes can be used for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).Keywords: open resonator, aperture coupling element, rectangular waveguide, excitation efficiency, wire grating, oscillation Q-factorManuscript submitted 02.12.2021Radio phys. radio astron. 2022, 27(1): 064-074REFERENCES1. KASATKIN, L. V. and CHAYKA, V. E., 2006. Semiconductor Devices of Millimeter Wave Range. Sevastopol, Ukraine: Veber Publ. (in Russian).2. NALIVAIKO, V. A., BOZHKOV, V. G. and NEUDAKHIN, V. I., 1991. Gunn Diodes for Solid State Tunable Generators. Elektronnaya promyshlennost’. No 7, pp. 58–67 (in Russian).3. ARKUSHA, YU. V., PISKUN, A. A. and STOROZHENKO, I. P., 2010. Energy and frequency characteristics of Al1-xInxN-based Gunn diodes operating in a resonant cavity of complex geometryBulletin (Visnyk) of V. N. Karazin National University of Kharkiv. Ser. Radiophysics and Electronics, No 927, issue16, pp.3–6 (in Russian).4. SOLBACH, K., SICKLING, F., and BARTH, H., 1983. Harmonic Gunn Oscillators Allow Frequency Growth. Microwaves and RF, vol. 22, No 4, pp. 75–127.5. KUZMICHEV, I. K., 2000. Matching of quasioptical open resonators with waveguide feeders. Radiophys. Quantum Electron. vol. 43, is. 4, pp. 294-302. DOI: https://doi.org/10.1007/BF026771946. KUZMICHEV, I. K., and KHLOPOV, G. I., 1989. Matched excitation of quasi-optical open resonators. In: Quasi-optical techniques at millimeter and submillimeter wavelengths. Kharkiv, Ukrain: IRE AS of UkSSR Publ. pp. 149–156 (in Russian).7. SCIENTIFIC RESEARCH INSTITUTE OF SEMICONDUCTOR DEVICES., 2021. Low to Medium Power (<100 mW) Millimeter-Wave (f=30–150 GHz) Gunn Diodes. (in Russian). [online]. [viewed 12 October 2021]. Available from: https://www.niipp.ru/catalog/detail.php?ID=2228. SOOHOO, R. F.,1963. Nonconfocal multimode resonators for masers. Proc. IEEE. vol. 51, No 1, pp. 70-75. DOI: https://doi.org/10.1109/PROC.1963.16619. TARASOV, L. V., 1981. Physics of processes in coherent optical radiation generators. Moscow, USSR: Radio and Svyaz’ Publ. (in Russian).10. VAINSHTEIN, L. A., 1963. On the electrodynamic theory of gratings. Part 1. In: High-Power Electronics. Moscow, USSR: USSR Academy of Sciences Publ. House, No 2, pp. 26–56 (in Russian).11. VOLMAN, V. I. and PIMENOV, Yu. V., 1971. Technical electrodynamics. Moscow, USSR: Svyaz’ Publ. (in Russian).12. KUZMICHEV, I. K., YERYOMKA, V. D., МAY, A. V. and TROSHCHILO, A. S., 2017. Open resonator for summation of powers at sub-terahertz and terahertz frequencies. Radio Phys. Radio Astron. vol. 22, No 1, pp. 67-77 (in Russian). DOI: https://doi.org/10.15407/rpra22.01.06713. KUZMICHEV, I. K., 1991. Aperture excitation of millimeter-wavelength open resonators PhD. Thesis, Rostov State University (in Russian).14. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, Y. K., 1986. Resonance wave scattering. vol. 1. Diffraction Gratings. Kyiv, USSR: ‘Naukova Dumka’ Publ. house (in Russian).15. ANDROSOV, V. P. and KUZMICHEV, I. K., 1987. Influence on excitation efficiency of the open resonator of its parameters and connection with a waveguide. Kharkov, USSR: IRE AN UkrSSR. Preprint no. 354. (in Russian).16. KARUSHKIN, N. F., 2018. Solid-state components and devices of terahertz electronic technology in Ukraine. Telecommun.Radio Eng. vol. 77, is. 19, pp. 1735-1766. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i19.6017. DMITRIEV, V. V. (ed.), AKPAMBETOV, V. B., BRONNIKOVA, E. G., DEMIDOV, V. P., KARPEEV, D. V., LARIONOV, I. M. and VYSOTSKY, B. F. (ed.), 1985. Integrated piezoelectric signal filters and processing circuits. Moscow, USSR: Radio i Svyaz’Publ. (in Russian).18. ZAGORODNOV, A. P. and YAKUNIN, A. N., 2012. Problems of low-noise, high-frequency reference oscillator design. Nauchnoe Priborostroenie. vol. 22, No 1, pp. 19–24 (in Russian).
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1380
work_keys_str_mv AT kuzmichevik theresonantsystemofasubterahertzlocaloscillator
AT muzychishinbi theresonantsystemofasubterahertzlocaloscillator
AT popkovayu theresonantsystemofasubterahertzlocaloscillator
AT mayalexanderv theresonantsystemofasubterahertzlocaloscillator
AT mayalexeyv theresonantsystemofasubterahertzlocaloscillator
AT kuzmichevik rezonansnasistemageterodinasubteragercovogodíapazonučastot
AT muzychishinbi rezonansnasistemageterodinasubteragercovogodíapazonučastot
AT popkovayu rezonansnasistemageterodinasubteragercovogodíapazonučastot
AT mayalexanderv rezonansnasistemageterodinasubteragercovogodíapazonučastot
AT mayalexeyv rezonansnasistemageterodinasubteragercovogodíapazonučastot
AT kuzmichevik resonantsystemofasubterahertzlocaloscillator
AT muzychishinbi resonantsystemofasubterahertzlocaloscillator
AT popkovayu resonantsystemofasubterahertzlocaloscillator
AT mayalexanderv resonantsystemofasubterahertzlocaloscillator
AT mayalexeyv resonantsystemofasubterahertzlocaloscillator
first_indexed 2025-12-02T15:24:43Z
last_indexed 2025-12-02T15:24:43Z
_version_ 1851756935569735680
spelling rpra-journalorgua-article-13802023-06-20T14:13:38Z THE RESONANT SYSTEM OF A SUB-TERAHERTZ LOCAL OSCILLATOR РЕЗОНАНСНА СИСТЕМА ГЕТЕРОДИНА СУБТЕРАГЕРЦОВОГО ДІАПАЗОНУ ЧАСТОТ Kuzmichev, I. K. Muzychishin, B. I. Popkov, A. Yu. May, Аlexander V. May, Alexey V. Purpose. The excitation efficiency is investigated of the first higher-order axially asymmetric oscillation mode (TEM10q) excited in a hemispherical open resonator (OR) at the frequencies of the fundamental and second-order harmonics of the Gunn diode in the 4-mm and 2-mm wavelength ranges. The hemispherical resonator is coupled to its input waveguide via aperture-type coupling elements. The diameter 2a of the OR mirror apertures is 38 mm, while the curvature radius of the spherical reflector is R = 39 mm and the normalized distance between the mirrors is L/R = 0.593. Two aperture coupling elements of dimensions a × b = 6.9 × 9.6 mm are used to excite the OR. They permit controlling separately the functions of field-to-field matching (modes in the resonator and in the waveguide) and volume-to-volume coupling of the structural elements (the resonator and the waveguide). They are located at the center of the planar mirror. The field matching is determined by the geometric dimensions of the coupling elements, whereas the coupling matching is determined by the period of the one-dimensional E-polarized grating in their apertures. The Gunn diodes are used as generators, operating at the frequencies of the fundamental (75 GHz) and the second-order (150 GHz) harmonics. The excitation efficiency of the TEM1011 oscillation in the OR of the geometry specified here, using aperture-type coupling elements as described, is 81.5%.Design/methodology/approach. The excitation efficiency of higher-order oscillation modes TEM10q in the OR being driven by an incident TE10 mode that arrives via two rectangular guides, is evalua-ted using the antenna surface utilization factor. The reflection coefficient from the OR and the loaded Q-factor are estimated in the familiar technique of partial reflection coefficients summation.Findings. As has been shown, in an OR of parameters 2а = 38 mm, R = 78 mm, and L/R = 0.287 TEM1022 oscillations are excited at the frequency of the Gunn diode’s second-order harmonic (i.e., 150 GHz) with an efficiency of 84%. In that same resonator, the excitation efficiency of the TEM1011 mode at the fundamental Gunn diode’s harmonic (frequency of 75 GHz) equals 54%. By placing one-dimensional (E-polarized) wire gratings in the aperture of the coupling elements it proves possible to match the resonator with the waveguide. It has been found that in the case of a l = 0.2 mm spatial period of the wire grating and matched excitation of the resonator at f = 150 GHz (i. e. Г150 = 0), the reflection coefficient Г75 from the OR at f = 75 GHz equals 0.637. Upon excitation in the OR of oscillations in the TEM1022 mode, the total loss at f = 150 GHz is –1.23 dB. With TEM1011 oscillations excited in the same resonator at a frequency of 75 GHz, the total losses increase up to –5.4 dB.Conclusions. The analysis has shown that an OR implementing the proposed method of excitation of higher-order axially asymmetric oscillation modes can be used for constructing a subterahertz range local oscillator. Moreover, such a resonant system may be considered both as a power combiner and a diplexer (filter).Keywords: open resonator, aperture coupling element, rectangular waveguide, excitation efficiency, wire grating, oscillation Q-factorManuscript submitted 02.12.2021Radio phys. radio astron. 2022, 27(1): 064-074REFERENCES1. KASATKIN, L. V. and CHAYKA, V. E., 2006. Semiconductor Devices of Millimeter Wave Range. Sevastopol, Ukraine: Veber Publ. (in Russian).2. NALIVAIKO, V. A., BOZHKOV, V. G. and NEUDAKHIN, V. I., 1991. Gunn Diodes for Solid State Tunable Generators. Elektronnaya promyshlennost’. No 7, pp. 58–67 (in Russian).3. ARKUSHA, YU. V., PISKUN, A. A. and STOROZHENKO, I. P., 2010. Energy and frequency characteristics of Al1-xInxN-based Gunn diodes operating in a resonant cavity of complex geometryBulletin (Visnyk) of V. N. Karazin National University of Kharkiv. Ser. Radiophysics and Electronics, No 927, issue16, pp.3–6 (in Russian).4. SOLBACH, K., SICKLING, F., and BARTH, H., 1983. Harmonic Gunn Oscillators Allow Frequency Growth. Microwaves and RF, vol. 22, No 4, pp. 75–127.5. KUZMICHEV, I. K., 2000. Matching of quasioptical open resonators with waveguide feeders. Radiophys. Quantum Electron. vol. 43, is. 4, pp. 294-302. DOI: https://doi.org/10.1007/BF026771946. KUZMICHEV, I. K., and KHLOPOV, G. I., 1989. Matched excitation of quasi-optical open resonators. In: Quasi-optical techniques at millimeter and submillimeter wavelengths. Kharkiv, Ukrain: IRE AS of UkSSR Publ. pp. 149–156 (in Russian).7. SCIENTIFIC RESEARCH INSTITUTE OF SEMICONDUCTOR DEVICES., 2021. Low to Medium Power (<100 mW) Millimeter-Wave (f=30–150 GHz) Gunn Diodes. (in Russian). [online]. [viewed 12 October 2021]. Available from: https://www.niipp.ru/catalog/detail.php?ID=2228. SOOHOO, R. F.,1963. Nonconfocal multimode resonators for masers. Proc. IEEE. vol. 51, No 1, pp. 70-75. DOI: https://doi.org/10.1109/PROC.1963.16619. TARASOV, L. V., 1981. Physics of processes in coherent optical radiation generators. Moscow, USSR: Radio and Svyaz’ Publ. (in Russian).10. VAINSHTEIN, L. A., 1963. On the electrodynamic theory of gratings. Part 1. In: High-Power Electronics. Moscow, USSR: USSR Academy of Sciences Publ. House, No 2, pp. 26–56 (in Russian).11. VOLMAN, V. I. and PIMENOV, Yu. V., 1971. Technical electrodynamics. Moscow, USSR: Svyaz’ Publ. (in Russian).12. KUZMICHEV, I. K., YERYOMKA, V. D., МAY, A. V. and TROSHCHILO, A. S., 2017. Open resonator for summation of powers at sub-terahertz and terahertz frequencies. Radio Phys. Radio Astron. vol. 22, No 1, pp. 67-77 (in Russian). DOI: https://doi.org/10.15407/rpra22.01.06713. KUZMICHEV, I. K., 1991. Aperture excitation of millimeter-wavelength open resonators PhD. Thesis, Rostov State University (in Russian).14. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, Y. K., 1986. Resonance wave scattering. vol. 1. Diffraction Gratings. Kyiv, USSR: ‘Naukova Dumka’ Publ. house (in Russian).15. ANDROSOV, V. P. and KUZMICHEV, I. K., 1987. Influence on excitation efficiency of the open resonator of its parameters and connection with a waveguide. Kharkov, USSR: IRE AN UkrSSR. Preprint no. 354. (in Russian).16. KARUSHKIN, N. F., 2018. Solid-state components and devices of terahertz electronic technology in Ukraine. Telecommun.Radio Eng. vol. 77, is. 19, pp. 1735-1766. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i19.6017. DMITRIEV, V. V. (ed.), AKPAMBETOV, V. B., BRONNIKOVA, E. G., DEMIDOV, V. P., KARPEEV, D. V., LARIONOV, I. M. and VYSOTSKY, B. F. (ed.), 1985. Integrated piezoelectric signal filters and processing circuits. Moscow, USSR: Radio i Svyaz’Publ. (in Russian).18. ZAGORODNOV, A. P. and YAKUNIN, A. N., 2012. Problems of low-noise, high-frequency reference oscillator design. Nauchnoe Priborostroenie. vol. 22, No 1, pp. 19–24 (in Russian). Предмет і мета роботи. Дослідження особливостей збудження першого вищого аксіально-несиметричного типу коливань TEM10q у відкритому резонаторі (ВР) у 4-та 2-мм діапазонах довжин хвиль. Напівсферичний резонатор включений у хвилевідну лінію передачі. Апертури дзеркал резонатора (розмір 2а) дорівнюють 38 мм, радіус кривизни сферичного відбивача R = 39 мм, нормована відстань між дзеркалами L/R = 0.593. Для збудження ВР використовуються два апертурні елементи зв’язку з розмірами a × b = 6.9 × 9.6 мм, що розташовані в центрі плоского дзеркала. Особливість таких елементів зв’язку полягає в тому, що вони дозволяють розділити функції узгодження за полем (коливання в резонаторі й хвилевідна мода) і за зв’язком елементів структури (резонатор і хвилевідний тракт). Узгодження за полем визначається геометричними розмірами елементів зв’язку, а узгодження за зв’язком—періодом одновимірної Е-поляризованої решітки в їх розкривах. В якості генераторів використовуються діоди Ганна, що працюють на частотах основної (75 ГГц) і другої (150 ГГц) гармонік. Ефективність збудження коливання TEM1011 у ВР зазначеної вище геометрії за допомогою апертурних елементів зв’язку становить 81.5 %.Методи та методологія. Для визначення ефективності збудження в резонаторі вищого коливання типу TEM10q за допомогою моди TE10, що надходить з двох прямокутних хвилеводів, застосовується коефіцієнт використання поверхні антени. Коефіцієнт відбиття від ВР та навантажена добротність визначаються за допомогою відомого методу підсумовування парціальних коефіцієнтів відбиття від резонансної системи.Результати. Показано, що у ВР з параметрами 2а = 38 мм, R = 78 мм, L/R = 0.287 мода TEM1022  збуджується з ефективністю 84 % на частоті другої гармоніки діодів Ганна, що дорівнює 150 ГГц. У цьому ж резонаторі ефективність збудженнямоди TEM1011 складає 54% на частоті основної гармоніки діодів Ганна, тобто 75 ГГц. За допомогою одновимірних, Е-поляризованих дротяних решіток, що розташовуються в розкривах апертурних елементів зв’язку, можна узгодити резонатор з хвилеводним трактом. Встановлено, що при застосуванні дротяної решітки з періодом l = 0.2 мм і узгодженому збудженні резонатора на частоті 150 ГГц (Г150 = 0) коефіцієнт відбиття Г75 від ВР на частоті 75 ГГц складає вже 0.637. Сумарні втрати при збудженні моди TEM1022 у ВР зазначеної вище геометрії на частоті 150 ГГц становлять –1.23 дБ. При збудженні в цьому ж резонаторі моди TEM1011  на частоті 75 ГГц сумарні втрати зростають до –5.4 дБ.Висновки. Виконані дослідження показали, що ВР із запропонованим апертурним способом збудження вищих аксіально-несиметричних типів коливань можна використовувати для побудови гетеродина субтерагерцового діапазону частот. Таку резонансну систему можна розглядати одночасно як суматор потужності і як діплексер (фільтр).Ключові слова: відкритий резонатор, апертурний елемент зв’язку, прямокутний хвилевід, ефективність збудження, дротова решітка, добротність коливанняСтаття надійшла до редакції 02.12.2021Radio phys. radio astron. 2022, 27(1): 064-074БІБЛІОГРАФІЧНИЙ СПИСОК1. KASATKIN, L. V. and CHAYKA, V. E., 2006. Semiconductor Devices of Millimeter Wave Range. Sevastopol, Ukraine: Veber Publ. (in Russian).2. NALIVAIKO, V. A., BOZHKOV, V. G. and NEUDAKHIN, V. I., 1991. Gunn Diodes for Solid State Tunable Generators. Elektronnaya promyshlennost’. No 7, pp. 58–67 (in Russian).3. ARKUSHA, YU. V., PISKUN, A. A. and STOROZHENKO, I. P., 2010. Energy and frequency characteristics of Al1-xInxN-based Gunn diodes operating in a resonant cavity of complex geometryBulletin (Visnyk) of V. N. Karazin National University of Kharkiv. Ser. Radiophysics and Electronics, No 927, issue16, pp.3–6 (in Russian).4. SOLBACH, K., SICKLING, F., and BARTH, H., 1983. Harmonic Gunn Oscillators Allow Frequency Growth. Microwaves and RF, vol. 22, No 4, pp. 75–127.5. KUZMICHEV, I. K., 2000. Matching of quasioptical open resonators with waveguide feeders. Radiophys. Quantum Electron. vol. 43, is. 4, pp. 294-302. DOI: https://doi.org/10.1007/BF026771946. KUZMICHEV, I. K., and KHLOPOV, G. I., 1989. Matched excitation of quasi-optical open resonators. In: Quasi-optical techniques at millimeter and submillimeter wavelengths. Kharkiv, Ukrain: IRE AS of UkSSR Publ. pp. 149–156 (in Russian).7. SCIENTIFIC RESEARCH INSTITUTE OF SEMICONDUCTOR DEVICES., 2021. Low to Medium Power (<100 mW) Millimeter-Wave (f=30–150 GHz) Gunn Diodes. (in Russian). [online]. [viewed 12 October 2021]. Available from: https://www.niipp.ru/catalog/detail.php?ID=2228. SOOHOO, R. F.,1963. Nonconfocal multimode resonators for masers. Proc. IEEE. vol. 51, No 1, pp. 70-75. DOI: https://doi.org/10.1109/PROC.1963.16619. TARASOV, L. V., 1981. Physics of processes in coherent optical radiation generators. Moscow, USSR: Radio and Svyaz’ Publ. (in Russian).10. VAINSHTEIN, L. A., 1963. On the electrodynamic theory of gratings. Part 1. In: High-Power Electronics. Moscow, USSR: USSR Academy of Sciences Publ. House, No 2, pp. 26–56 (in Russian).11. VOLMAN, V. I. and PIMENOV, Yu. V., 1971. Technical electrodynamics. Moscow, USSR: Svyaz’ Publ. (in Russian).12. KUZMICHEV, I. K., YERYOMKA, V. D., МAY, A. V. and TROSHCHILO, A. S., 2017. Open resonator for summation of powers at sub-terahertz and terahertz frequencies. Radio Phys. Radio Astron. vol. 22, No 1, pp. 67-77 (in Russian). DOI: https://doi.org/10.15407/rpra22.01.06713. KUZMICHEV, I. K., 1991. Aperture excitation of millimeter-wavelength open resonators PhD. Thesis, Rostov State University (in Russian).14. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, Y. K., 1986. Resonance wave scattering. vol. 1. Diffraction Gratings. Kyiv, USSR: ‘Naukova Dumka’ Publ. house (in Russian).15. ANDROSOV, V. P. and KUZMICHEV, I. K., 1987. Influence on excitation efficiency of the open resonator of its parameters and connection with a waveguide. Kharkov, USSR: IRE AN UkrSSR. Preprint no. 354. (in Russian).16. KARUSHKIN, N. F., 2018. Solid-state components and devices of terahertz electronic technology in Ukraine. Telecommun.Radio Eng. vol. 77, is. 19, pp. 1735-1766. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i19.6017. DMITRIEV, V. V. (ed.), AKPAMBETOV, V. B., BRONNIKOVA, E. G., DEMIDOV, V. P., KARPEEV, D. V., LARIONOV, I. M. and VYSOTSKY, B. F. (ed.), 1985. Integrated piezoelectric signal filters and processing circuits. Moscow, USSR: Radio i Svyaz’Publ. (in Russian).18. ZAGORODNOV, A. P. and YAKUNIN, A. N., 2012. Problems of low-noise, high-frequency reference oscillator design. Nauchnoe Priborostroenie. vol. 22, No 1, pp. 19–24 (in Russian). Видавничий дім «Академперіодика» 2023-06-13 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1380 10.15407/rpra27.01.064 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 1 (2022); 64 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 1 (2022); 64 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 1 (2022); 64 2415-7007 1027-9636 10.15407/rpra27.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1380/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY