CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR

Subject and Purpose. The problems under consideration concern selection and focusing of higher-order modes in a waveguide-based dielectric laser. The purpose is to clarify the physics underlying the behavior of, and permitting control over, continuous terahertz-frequency laser beams of various spati...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Degtyarеv, A. V., Dubinin, M. M., Gurin, O. V., Maslov, V. A., Muntean, K. I., Ryabykh, V. M., Senyuta, V. S., Svystunov, O. O.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1386
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1386
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2023-06-20T14:17:55Z
collection OJS
language English
topic
spellingShingle
Degtyarеv, A. V.
Dubinin, M. M.
Gurin, O. V.
Maslov, V. A.
Muntean, K. I.
Ryabykh, V. M.
Senyuta, V. S.
Svystunov, O. O.
CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
topic_facet
format Article
author Degtyarеv, A. V.
Dubinin, M. M.
Gurin, O. V.
Maslov, V. A.
Muntean, K. I.
Ryabykh, V. M.
Senyuta, V. S.
Svystunov, O. O.
author_facet Degtyarеv, A. V.
Dubinin, M. M.
Gurin, O. V.
Maslov, V. A.
Muntean, K. I.
Ryabykh, V. M.
Senyuta, V. S.
Svystunov, O. O.
author_sort Degtyarеv, A. V.
title CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
title_short CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
title_full CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
title_fullStr CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
title_full_unstemmed CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR
title_sort control over higher-order transverse modes in a waveguide-based quasi-optical resonator
description Subject and Purpose. The problems under consideration concern selection and focusing of higher-order modes in a waveguide-based dielectric laser. The purpose is to clarify the physics underlying the behavior of, and permitting control over, continuous terahertz-frequency laser beams of various spatial polarizations.Methods and Methodology. The mode parameters of the waveguide-based laser resonator involving an inhomogeneous phasestepped mirror were calculated in a matrix technique. To analyze the propagation and focusing of the laser beams that can be excited in a variety of diffraction zones by the wave modes of a waveguide-based quasi-optical resonator, a vectorial Rayleigh—Sommerfeld theory was used. The pertinent experimental studies were performed with the use of known measurement methods suitable for the terahertz frequency range.Results. A method for selecting the higher-order EH12q-mode of a terahertz-range laser resonator has been suggested, substantiated theoretically and approbated in experiment. It envisages placing an additional element to perform control over the system’s modal structure, namely a (2.3...2.8) l-wide groove on the surface of one of the resonator mirrors. Th is measure can significantly increase losses for all undesirable modes. At the same time, the losses for the higher EH12q-mode remain practically unchanged, which creates conditions for its predominant excitation. Theoretical and experimental studies of moderate and ‘sharp’ focusing in free space of higher-order modes with different spatial polarizations of a dielectric waveguide-based resonator have been carried out.Conclusion. As has been shown, the proposed phase-stepped mirror with a groove can eff ectively select the higher-order transverse modes that may be required. The linearly polarized EH12q-mode has maximum field intensity in the focal region of the lens employed. For azimuthally polarized TE02q- and TE03q-modes the central lobes, noticeably shifted from the focus of the lens, have a field maximum. An increase in the axial intensity is observed upon ‘sharp’ focusing in the field distribution of the radially polarized TM 02q- and TM03q-modes. In this case their central lobes, like those of the higher TE0nq-modes, are noticeably shifted from the lens focus.Keywords: terahertz laser, dielectric resonator, inhomogeneous mirror, polarization, selection, focusing, high-order modesREFERENCES1. Valusis, G. and Lisauskas, A., 2021. Roadmap of terahertz imaging 2021. Sensors, 21(12), Art. 4092. DOI: 10.3390/s211240922. Fu, J., Yu, X., Wang, Y. and Chen, P., 2018. Generation of pure longitudinal magnetization needle with tunable longitudinal depth by focusing azimuthally polarized beams. Appl. Phys. B, 124(1), Art. 11. DOI:10.1007/s00340-017-6886-53. Kozawa, Y. and Sato, S., 2007. Sharper focal spot formed by higher-order radially polarized laser beams. JOSA-A, 24(6), pp. 1793—1798. DOI: 10.1364/JOSAA.24.001793.4. Stafeev, S.S., Kozlova, E.S., Nalimov, A.G. and Kotlyar, V.V., 2020. Tight focusing of a cylindrical vector beam by a hyperbolic secant gradient index lens. Opt. Lett., 45(7), pp. 1687—1690. DOI: 10.1364/OL.3898035. Kallioniem, L., Turquet, L., Lipsanen, H., Kauranen, M. and Bautista, G., 2020. Tailoring the longitudinal electric fields of high-order laser beams and their direct verification in three dimensions. Opt. Commun., 459, Art. 124894. DOI: 10.1016/j.opt-com.2019.1248946. Stafeev, S.S., Kozlova, E.S. and Nalimov, A.G., 2020. Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens. Comput. Opt., 44(1), pp. 29—33. DOI: 10.18287/2412-6179-CO-633.7. Jin, X., Zhang, H., Xu, Y., Zhang, X. and Zhu, H., 2015. Representation and focusing properties of higher-order radially polarized Laguerre—Gaussian beams. J. Mod. Opt., 62(8), pp. 626—632. DOI:10.1080/09500340.2014.999138.8. Khonina, S.N., Alferov, S.V. and Karpeev, S.V., 2013. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt. Lett., 38(17), pp. 3223—3226. DOI: 10.1364/OL.38.0032239. Kulipanov, G.N., Lisenko, A.A., Matvienko, G.G., Oshlakov, V.K., Kubarev, V.V., Chesnokov, E.N. and Babchenko, S.V., 2014. Experimental study of the interaction between terahertz radiation from the Novosibirsk free electron laser and water aerosol. Atmos. Ocean. Opt., 28(2), pp. 165—168. DOI: 10.1134/S102485601502006210. Volodenko, A.V., Gurin, O.V., Degtyarev, A.V., Maslov, V.A., Svich, V.A. and Topkov, A.N., 2010. Selection of the higher transverse modes of a waveguide quasi-optical resonator. Quantum Electron., 40(1), pp. 68—72. DOI: 10.1070/QE2010v040n01ABEH01414211. Li, G., Wang, D., Fang, L., Ran, Z. and Yan, Q., 2019. Improvement to beam quality of optically pumped terahertz gas lasers with hole-coupling resonators. Opt. Eng., 58(2), pp. 026104 (1—6 p.). DOI:0.1117/1.OE.58.2.02610412. Gurin, O.V., Degtyarev, А.V., Dubinin, N.N., Legenkiy, M.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N. and Senyuta, V.S., 2021. Formation of beams with nonuniform polarization of radiation in a cw waveguide terahertz laser. Quantum Electron., 51(4), pp. 338—342. DOI: 10.1070/QEL17511.13. Gurin, O.V., Degtyarev, А.V., Dubinin, N.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N. and Senyuta, V.S., 2020. Focusing of modes with an inhomogeneous spatial polarization of the dielectric resonator of a terahertz laser. Telecommunications and Radio Engineering, 79(2), pp. 105—116. DOI: 10.1615/TelecomRadEng.v79.i2.30.14. Degtyarev, A., Maslov, V. and Topkov, A., 2020. Continuous-wave terahertz waveguide lasers. LAP LAMBERT Academic Publishing.15. Epishin, V.A., Maslov, V.A., Pokormyakho, N.G. and Svich, V.A., 1989. Investigation of the oscillation modes and optimization of the output power of optically pumped submillimeter waveguide lasers. Sov. J. Quantum Electron., 19(8), pp. 1007—1010.
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1386
work_keys_str_mv AT degtyarevav controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT dubininmm controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT gurinov controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT maslovva controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT munteanki controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT ryabykhvm controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT senyutavs controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
AT svystunovoo controloverhigherordertransversemodesinawaveguidebasedquasiopticalresonator
first_indexed 2025-12-02T15:24:53Z
last_indexed 2025-12-02T15:24:53Z
_version_ 1850423618271444992
spelling rpra-journalorgua-article-13862023-06-20T14:17:55Z CONTROL OVER HIGHER-ORDER TRANSVERSE MODES IN A WAVEGUIDE-BASED QUASI-OPTICAL RESONATOR Degtyarеv, A. V. Dubinin, M. M. Gurin, O. V. Maslov, V. A. Muntean, K. I. Ryabykh, V. M. Senyuta, V. S. Svystunov, O. O. Subject and Purpose. The problems under consideration concern selection and focusing of higher-order modes in a waveguide-based dielectric laser. The purpose is to clarify the physics underlying the behavior of, and permitting control over, continuous terahertz-frequency laser beams of various spatial polarizations.Methods and Methodology. The mode parameters of the waveguide-based laser resonator involving an inhomogeneous phasestepped mirror were calculated in a matrix technique. To analyze the propagation and focusing of the laser beams that can be excited in a variety of diffraction zones by the wave modes of a waveguide-based quasi-optical resonator, a vectorial Rayleigh—Sommerfeld theory was used. The pertinent experimental studies were performed with the use of known measurement methods suitable for the terahertz frequency range.Results. A method for selecting the higher-order EH12q-mode of a terahertz-range laser resonator has been suggested, substantiated theoretically and approbated in experiment. It envisages placing an additional element to perform control over the system’s modal structure, namely a (2.3...2.8) l-wide groove on the surface of one of the resonator mirrors. Th is measure can significantly increase losses for all undesirable modes. At the same time, the losses for the higher EH12q-mode remain practically unchanged, which creates conditions for its predominant excitation. Theoretical and experimental studies of moderate and ‘sharp’ focusing in free space of higher-order modes with different spatial polarizations of a dielectric waveguide-based resonator have been carried out.Conclusion. As has been shown, the proposed phase-stepped mirror with a groove can eff ectively select the higher-order transverse modes that may be required. The linearly polarized EH12q-mode has maximum field intensity in the focal region of the lens employed. For azimuthally polarized TE02q- and TE03q-modes the central lobes, noticeably shifted from the focus of the lens, have a field maximum. An increase in the axial intensity is observed upon ‘sharp’ focusing in the field distribution of the radially polarized TM 02q- and TM03q-modes. In this case their central lobes, like those of the higher TE0nq-modes, are noticeably shifted from the lens focus.Keywords: terahertz laser, dielectric resonator, inhomogeneous mirror, polarization, selection, focusing, high-order modesREFERENCES1. Valusis, G. and Lisauskas, A., 2021. Roadmap of terahertz imaging 2021. Sensors, 21(12), Art. 4092. DOI: 10.3390/s211240922. Fu, J., Yu, X., Wang, Y. and Chen, P., 2018. Generation of pure longitudinal magnetization needle with tunable longitudinal depth by focusing azimuthally polarized beams. Appl. Phys. B, 124(1), Art. 11. DOI:10.1007/s00340-017-6886-53. Kozawa, Y. and Sato, S., 2007. Sharper focal spot formed by higher-order radially polarized laser beams. JOSA-A, 24(6), pp. 1793—1798. DOI: 10.1364/JOSAA.24.001793.4. Stafeev, S.S., Kozlova, E.S., Nalimov, A.G. and Kotlyar, V.V., 2020. Tight focusing of a cylindrical vector beam by a hyperbolic secant gradient index lens. Opt. Lett., 45(7), pp. 1687—1690. DOI: 10.1364/OL.3898035. Kallioniem, L., Turquet, L., Lipsanen, H., Kauranen, M. and Bautista, G., 2020. Tailoring the longitudinal electric fields of high-order laser beams and their direct verification in three dimensions. Opt. Commun., 459, Art. 124894. DOI: 10.1016/j.opt-com.2019.1248946. Stafeev, S.S., Kozlova, E.S. and Nalimov, A.G., 2020. Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens. Comput. Opt., 44(1), pp. 29—33. DOI: 10.18287/2412-6179-CO-633.7. Jin, X., Zhang, H., Xu, Y., Zhang, X. and Zhu, H., 2015. Representation and focusing properties of higher-order radially polarized Laguerre—Gaussian beams. J. Mod. Opt., 62(8), pp. 626—632. DOI:10.1080/09500340.2014.999138.8. Khonina, S.N., Alferov, S.V. and Karpeev, S.V., 2013. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt. Lett., 38(17), pp. 3223—3226. DOI: 10.1364/OL.38.0032239. Kulipanov, G.N., Lisenko, A.A., Matvienko, G.G., Oshlakov, V.K., Kubarev, V.V., Chesnokov, E.N. and Babchenko, S.V., 2014. Experimental study of the interaction between terahertz radiation from the Novosibirsk free electron laser and water aerosol. Atmos. Ocean. Opt., 28(2), pp. 165—168. DOI: 10.1134/S102485601502006210. Volodenko, A.V., Gurin, O.V., Degtyarev, A.V., Maslov, V.A., Svich, V.A. and Topkov, A.N., 2010. Selection of the higher transverse modes of a waveguide quasi-optical resonator. Quantum Electron., 40(1), pp. 68—72. DOI: 10.1070/QE2010v040n01ABEH01414211. Li, G., Wang, D., Fang, L., Ran, Z. and Yan, Q., 2019. Improvement to beam quality of optically pumped terahertz gas lasers with hole-coupling resonators. Opt. Eng., 58(2), pp. 026104 (1—6 p.). DOI:0.1117/1.OE.58.2.02610412. Gurin, O.V., Degtyarev, А.V., Dubinin, N.N., Legenkiy, M.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N. and Senyuta, V.S., 2021. Formation of beams with nonuniform polarization of radiation in a cw waveguide terahertz laser. Quantum Electron., 51(4), pp. 338—342. DOI: 10.1070/QEL17511.13. Gurin, O.V., Degtyarev, А.V., Dubinin, N.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N. and Senyuta, V.S., 2020. Focusing of modes with an inhomogeneous spatial polarization of the dielectric resonator of a terahertz laser. Telecommunications and Radio Engineering, 79(2), pp. 105—116. DOI: 10.1615/TelecomRadEng.v79.i2.30.14. Degtyarev, A., Maslov, V. and Topkov, A., 2020. Continuous-wave terahertz waveguide lasers. LAP LAMBERT Academic Publishing.15. Epishin, V.A., Maslov, V.A., Pokormyakho, N.G. and Svich, V.A., 1989. Investigation of the oscillation modes and optimization of the output power of optically pumped submillimeter waveguide lasers. Sov. J. Quantum Electron., 19(8), pp. 1007—1010. Видавничий дім «Академперіодика» 2023-06-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1386 10.15407/rpra27.02.129 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 2 (2022); 129 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 2 (2022); 129 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 2 (2022); 129 2415-7007 1027-9636 10.15407/rpra27.02 en http://rpra-journal.org.ua/index.php/ra/article/view/1386/pdf Copyright (c) 2023 RADIO PHYSICS AND RADIO ASTRONOMY