MODERNIZATION OF THE KHARKIV MICROWAVE SPECTROMETER: CURRENT STATE
Subject and Purpose. Results are presented of the recent considerable upgrade implemented at the Kharkiv microwave spectrometer. The upgrade has been aimed at extending the operating frequency range and increasing the utmost accessible spectral resolution of the spectrometer.Methods and Methodology....
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1423 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| Резюме: | Subject and Purpose. Results are presented of the recent considerable upgrade implemented at the Kharkiv microwave spectrometer. The upgrade has been aimed at extending the operating frequency range and increasing the utmost accessible spectral resolution of the spectrometer.Methods and Methodology. In order to extend the frequency range we have designed and constructed new BWO-based oscillator units, also providing for possibility of frequency tripler application. Construction of a new absorbing cell of enlarged diameter allowed us to considerably improve the spectral resolution for Lamb-dip measurements.Results. Owing to the upgrade, the spectrometer has become able to cover the frequency range from 34 to 420 GHz, with a gap from 183 to 200 GHz. The spectral resolution in the Lamb-dip observation mode has been increased by a factor of two. In addition, the functionality of the spectrometer has been significantly improved via modernization of several of its subsystems.Conclusions. The new upgrades of the spectrometer systems have permitted extending the operational frequency range and increasing the utmost accessible resolution by means of reducing the time-of-flight line broadening in the Lamb-dip measurements. In addition, application of square-wave frequency modulation with accurately known modulation parameters, in combination with careful modeling of the distortions caused by reflections in the absorbing cell, has allowed us to significantly improve the accuracy of line frequency measurements.Keywords: microwave spectrometer, millimeter wave spectrum; measurement accuracy, spectral linesManuscript submitted 18.03.2023Radio phys. radio astron. 2023, 28(3): 257-270REFERENCES 1. Alekseev, E.A., Motiyenko, R.A., Margulès, L., 2012. Millimeter- and Submillimeter-Wave Spectrometers on the Basis of Direct Digital Frequency Synthesizers. Radio Phys. Radio Astron., 3(1), pp. 75—88. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100 2. Alekseev, E.A., Ilyushin, V.V., Mescheryakov, A.A., 2014. High-Precision Microwave Spectrometer with Sub-Doppler Spectral Resolution. Radio Phys. Radio Astron., 19(4), pp. 364—374 (in Russian). DOI: https://doi.org/10.15407/rpra19.04.364 3. Smirnov, I.A., Piddyachiy, V.I., Ilyushin, V.V., Alekseev, E.A., Motiyenko, R.A., 2013. 1,3-Propanediol millimeter wave spectrum: Conformers I and II. J. Mol. Spectrosc., 293—294, pp. 33—37. DOI: https://doi.org/10.1016/j.jms.2013.10.001 4. Smirnov, I.A., Ilyushin, V.V., Alekseev, E.A., Margulès, L., Motiyenko, R.A., Drouin, B.J., 2014. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. J. Mol. Spectrosc., 295, pp. 44—50. DOI: https://doi.org/10.1016/j.jms.2013.11.006 5. Armieieva, I.A., Ilyushin, V.V., Alekseev, E.A., Dorovskaya, O.A., Margulès, L., Motiyenko, R.A., 2016. Millimeter wave spectroscopy of the ground, first and second excited torsional states of acetone. Radio Phys. Radio Astron., 21(1), pp. 37—47. DOI: https://doi.org/10.15407/rpra21.01.037 6. Belloche, A., Meshcheryakov, A.A., Garrod, R.T., Ilyushin, V.V., Alekseev, E.A., Motiyenko, R.A., Margulès, L., Müller, H.S.P., and Menten, K.M., 2017. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamide. Astron. Astrophys., 601, id. A49(41 pp.). DOI: https://doi.org/10.1051/0004-6361/201629724 7. Zakharenko, O., Ilyushin, V.V., Lewen, F., Müller, H.S.P., Schlemmer, S., Alekseev, E.A., Pogrebnyak, M.L., Armieieva, Iu.A., Li- Hong, Xu, Lees, R.M., 2019. Rotational spectroscopy of methyl mercaptan CH332SH at millimeter and submillimeter wavelengths. Astron. Astrophys., 629, id. A73. DOI: https://doi.org/10.1051/0004-6361/201935759 8. Alekseev, E., Ilyushin, V., Bakhmat, Y., Kniazkov, L., Budnikov, V., 2020. The Microwave Spectrometer at the Institute of Radio Astronomy of NASU: Recent Upgrades. In: 2020 IEEE Ukrainian Microwave Week (UkrMW): proc. Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3. 2020 IEEE 10th Int. Kharkiv Symp. "Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves" (MSMW), pp. 821—824. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252704 9. Alekseev, E.A., Ilyushin, V.V., and Motiyenko, R.A., 2022. Square-wave frequency modulation in microwave spectroscopy. Radio Phys. Radio Astron., 27(4), pp. 299—311. DOI: https://doi.org/10.15407/rpra27.04.299 10. Alekseev, E.A., Zakharenko, V.V., 2004. Direct digital synthesizer as a reference source of a millimeter-wave frequency synthesizer. In: Proc. of V Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves 2004" (MSMW 04). Vol. 2. Kharkov, Ukraine, 21—26 June 2004, p. 782—784. DOI: https://doi.org/10.1109/MSMW.2004.1346148 11. Alekseev, E.A., Zakharenko, V.V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron.,12(2), pp. 205—214 (in Russian). Available at: http://rpra-journal.org.ua/index.php/ra/article/view/602/173 12. Analog Devices. Available at: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf 13. Pickett, H.M., 1980. Determination of collisional linewidths and shifts by a convolution method. Appl. Opt., 19(16), pp. 2745— 2749. DOI: https://doi.org/10.1364/AO.19.002745 14. Snyder, L.E., Lovas, F.J., Hollis, J.M., Friedel, D.N., Jewell, P.R., Remijan, A., Ilyushin, V.V., Alekseev, E.A., Dyubko, S.F., 2005. A Rigorous Attempt To Verify Interstellar Glycine. Astrophys. J., 619, pp. 914—930. DOI: https://doi.org/10.1086/426677 15. Ilyushin, V.V., Alekseev, E.A., Dyubko, S.F., Motiyenko, R.A., Lovas, F.J., 2005. Millimeter wave spectrum of glycine. J. Mol. Spec- trosc., 231(1), pp. 15—22. DOI: https://doi.org/10.1016/j.jms.2004.12.003 16. ALMA Receiver Bands. Available at: https://www.eso.org/public/teles-instr/alma/receiver-bands/ 17. ALMA. First Light with the ALMA Band 1 Receiver. Available at: https://alma-telescope.jp/en/news/press/band1-202109-2 18. Gordy, W., Cook, R.L., 1984. Microwave Molecular Spectra. New York: John Wiley & Sons. ISNB 0471086819 19. Winton, R.S., Gordy, W., 1970. High-Precision Millimeter-Wave Spectroscopy With The Lamb Dip. Phys. Lett. A, 32(4), pp. 219— 220. DOI: https://doi.org/10.1016/0375-9601(70)90287-2 20. Multipliers — VDI Model: WR2.8×3. Available at: https://www.vadiodes.com/en/frequency-multipliers/10-products/169-wr28x3 21. Cazzoli, G., Cludi, L., Cotti, G., Dore, L., Degli Esposti, C., Bellini, M., and De Natali, P., 1994. The Rotational Spectrum of CHF3 in the Submillimeter-Wave and Far-Infrared Region: Observation of the K 3 Line Splitting. J. Mol. Spectrosc., 163, pp. 521—528. DOI: https://doi.org/10.1006/jmsp.1994.1044 |
|---|