POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES
Subject and Purpose. The present study is concerned with the linearly polarized electromagnetic wave transmission through a chiral metasurface composed of periodically assembled square dielectric helices. We expect that the metasurface of the kind has a wider range of functional capabilities to tran...
Saved in:
| Date: | 2023 |
|---|---|
| Main Authors: | , , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2023
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1426 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1426 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2023-12-13T19:23:30Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
chiral metasurface square dielectric helice transmission coefficient polarized wave cross-polarized wave |
| spellingShingle |
chiral metasurface square dielectric helice transmission coefficient polarized wave cross-polarized wave Yachin, V. V. Zinenko, T. L. Kochetova, L. A. Mladyonov, P. L. Mizrakhy, S. V. POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| topic_facet |
chiral metasurface square dielectric helice transmission coefficient polarized wave cross-polarized wave хіральні метаповерхні квадратні діелектричні спіралі коефіцієнт проходження поляризовані хвилі кросс-поляризована хвиля |
| format |
Article |
| author |
Yachin, V. V. Zinenko, T. L. Kochetova, L. A. Mladyonov, P. L. Mizrakhy, S. V. |
| author_facet |
Yachin, V. V. Zinenko, T. L. Kochetova, L. A. Mladyonov, P. L. Mizrakhy, S. V. |
| author_sort |
Yachin, V. V. |
| title |
POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| title_short |
POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| title_full |
POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| title_fullStr |
POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| title_full_unstemmed |
POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES |
| title_sort |
polarization and frequency selective characteristics of a chiral metasurface composed of periodically arranged square dielectric helices |
| title_alt |
ПОЛЯРИЗАЦІЙНО ТА ЧАСТОТНО СЕЛЕКТИВНІ ХАРАКТЕРИСТИКИ ХІРАЛЬНОЇ ПОВЕРХНІ, ЩО СКЛАДАЄТЬСЯ З ПЕРІОДИЧНО РОЗТАШОВАНИХ ДІЕЛЕКТРИЧНИХ КВАДРАТНИХ СПІРАЛЕЙ |
| description |
Subject and Purpose. The present study is concerned with the linearly polarized electromagnetic wave transmission through a chiral metasurface composed of periodically assembled square dielectric helices. We expect that the metasurface of the kind has a wider range of functional capabilities to transform a polarized wave into a cross-polarized one when compared to a similar metasurface composed of metal helices.Methods and Methodology. To find the scattering coefficients of the considered structure, the well-established method of integral functionals is followed. A set of volume integral equations in the vectorial form is solved for the equivalent electric and magnetic polarization currents of the analyzed periodic layer. A distinctive feature of the method is that the internal electromagnetic fields of the structure are initially found, whence the fields scattered by this structure are sought. The equations are discretized in terms of integral functionals related to the polarization currents and through the use of the double Floquet–Fourier series expansion technique.Results. It has been found that the metasurface transmission coefficients depend critically on the number of bars making the square helical particle. In the case of an even bar number, the chiral metasurface exhibits the same transmission coefficients for co-polarized field components in the event that linearly x- and y-polarized waves are incident. For cross-polarized field components, the transmission coefficients differ and can reach peak values at different frequencies. Finally, transmission coefficients of these polarizers have been investigated versus dimensions of helice-making bars.Conclusion. A wide variety of transmission properties observed in the metasurfaces make them particularly attractive for use in polarization converting and separating devices. The metasurface can feature dichroic asymmetric transmission and be used as a dichroic filter with polarization transformation. It can be put to use in differential phase sections and, also, as an effective dichroic cross-polarization converter (twist polarizer).Key words: chiral metasurface; square dielectric helice; transmission coefficient; polarized wave; cross-polarized waveManuscript submitted 07.11.2023Radio phys. radio astron. 2023, 28(3): 287-294REFERENCES1. Barron, L.D., 2009. Molecular light scattering and optical activity. Cambridge University Press.2. Hecht, E., 2016. Optics. 5th ed. Pearson Education, Harlow, 714 p.3. Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P. and Svirko, Y., 2003. Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett., 83(2), pp. 234—236. DOI: https://doi.org/10.1063/1.15920154. Fedotov, V.A., Mladyonov, P.L., Prosvirnin, S.L., Rogacheva, A.V., Chen, Y., and Zheludev, N.I., 2006. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett., 97(16), pp. 167401. DOI: https://doi.org/10.1103/PhysRevLett.97.1674015. Plum, E., Zhow, J., Dong, J., Fedotov, V.A., Kochny, T., Soukoulis, C.M., and Zheludev, N.I., 2009. Metamaterial with negative index due to chirality. Phys. Rev. B, 79(3), pp. 035407. DOI: https://doi.org/10.1103/PhysRevB.79.0354076. Fang, S., Luan, K., Ma, H.F., Lv, W., Li, Y., Zhu, Z., Guan, C., Shi, J., and Cui, T.J., 2017. Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials. J. Appl. Phys., 121(3), pp. 033103. DOI: https://doi.org/10.1063/1.49744777. Li, Z., Mutlu, M.. and Ozbay, E., 2013. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt., 15(2), pp. 023001. DOI: https://doi.org/10.1088/2040-8978/15/2/0230018. Collins, J.T., Kuppe, C., Hooper, D.C., Sibilia, C., Centini, M., and Valev, V.K., 2017. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater., 5(16), pp. 1700182. DOI: https://doi.org/10.1002/adom.2017001829. Wu, S., Xu, S., Zinenko, T.L., Yachin, V.V., Prosvirnin, S.L., and Tuz, V.R., 2019. 3D-printed chiral metasurface as a dichroic dual-band polarization converter. Opt. Lett., 44(4), pp. 1056—1059. DOI: https://doi.org/10.1364/OL.44.00105610. Wu, S., Yachin, V.V., Shcherbinin, V.I. and Tuz, V.R., 2019. Chiral metasurfaces formed by 3D-printed square helices: A flexible tool to manipulate wave polarization. J. Appl. Phys., 126(10), pp. 103101. DOI: https://doi.org/10.1063/1.511483811. Yachin, V., and Yasumoto, K., 2007. Method of integral functionals for electromagnetic wave scattering from a double-periodic magnetodielectric layer. JOSA A, 24(11), pp. 3606—3618. DOI: https://doi.org/10.1364/JOSAA.24.003606 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2023 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1426 |
| work_keys_str_mv |
AT yachinvv polarizationandfrequencyselectivecharacteristicsofachiralmetasurfacecomposedofperiodicallyarrangedsquaredielectrichelices AT zinenkotl polarizationandfrequencyselectivecharacteristicsofachiralmetasurfacecomposedofperiodicallyarrangedsquaredielectrichelices AT kochetovala polarizationandfrequencyselectivecharacteristicsofachiralmetasurfacecomposedofperiodicallyarrangedsquaredielectrichelices AT mladyonovpl polarizationandfrequencyselectivecharacteristicsofachiralmetasurfacecomposedofperiodicallyarrangedsquaredielectrichelices AT mizrakhysv polarizationandfrequencyselectivecharacteristicsofachiralmetasurfacecomposedofperiodicallyarrangedsquaredielectrichelices AT yachinvv polârizacíjnotačastotnoselektivníharakteristikihíralʹnoípoverhníŝoskladaêtʹsâzperíodičnoroztašovanihdíelektričnihkvadratnihspíralej AT zinenkotl polârizacíjnotačastotnoselektivníharakteristikihíralʹnoípoverhníŝoskladaêtʹsâzperíodičnoroztašovanihdíelektričnihkvadratnihspíralej AT kochetovala polârizacíjnotačastotnoselektivníharakteristikihíralʹnoípoverhníŝoskladaêtʹsâzperíodičnoroztašovanihdíelektričnihkvadratnihspíralej AT mladyonovpl polârizacíjnotačastotnoselektivníharakteristikihíralʹnoípoverhníŝoskladaêtʹsâzperíodičnoroztašovanihdíelektričnihkvadratnihspíralej AT mizrakhysv polârizacíjnotačastotnoselektivníharakteristikihíralʹnoípoverhníŝoskladaêtʹsâzperíodičnoroztašovanihdíelektričnihkvadratnihspíralej |
| first_indexed |
2025-12-02T15:26:38Z |
| last_indexed |
2025-12-02T15:26:38Z |
| _version_ |
1851757477308137472 |
| spelling |
rpra-journalorgua-article-14262023-12-13T19:23:30Z POLARIZATION AND FREQUENCY SELECTIVE CHARACTERISTICS OF A CHIRAL METASURFACE COMPOSED OF PERIODICALLY ARRANGED SQUARE DIELECTRIC HELICES ПОЛЯРИЗАЦІЙНО ТА ЧАСТОТНО СЕЛЕКТИВНІ ХАРАКТЕРИСТИКИ ХІРАЛЬНОЇ ПОВЕРХНІ, ЩО СКЛАДАЄТЬСЯ З ПЕРІОДИЧНО РОЗТАШОВАНИХ ДІЕЛЕКТРИЧНИХ КВАДРАТНИХ СПІРАЛЕЙ Yachin, V. V. Zinenko, T. L. Kochetova, L. A. Mladyonov, P. L. Mizrakhy, S. V. chiral metasurface; square dielectric helice; transmission coefficient; polarized wave; cross-polarized wave хіральні метаповерхні; квадратні діелектричні спіралі; коефіцієнт проходження; поляризовані хвилі; кросс-поляризована хвиля Subject and Purpose. The present study is concerned with the linearly polarized electromagnetic wave transmission through a chiral metasurface composed of periodically assembled square dielectric helices. We expect that the metasurface of the kind has a wider range of functional capabilities to transform a polarized wave into a cross-polarized one when compared to a similar metasurface composed of metal helices.Methods and Methodology. To find the scattering coefficients of the considered structure, the well-established method of integral functionals is followed. A set of volume integral equations in the vectorial form is solved for the equivalent electric and magnetic polarization currents of the analyzed periodic layer. A distinctive feature of the method is that the internal electromagnetic fields of the structure are initially found, whence the fields scattered by this structure are sought. The equations are discretized in terms of integral functionals related to the polarization currents and through the use of the double Floquet–Fourier series expansion technique.Results. It has been found that the metasurface transmission coefficients depend critically on the number of bars making the square helical particle. In the case of an even bar number, the chiral metasurface exhibits the same transmission coefficients for co-polarized field components in the event that linearly x- and y-polarized waves are incident. For cross-polarized field components, the transmission coefficients differ and can reach peak values at different frequencies. Finally, transmission coefficients of these polarizers have been investigated versus dimensions of helice-making bars.Conclusion. A wide variety of transmission properties observed in the metasurfaces make them particularly attractive for use in polarization converting and separating devices. The metasurface can feature dichroic asymmetric transmission and be used as a dichroic filter with polarization transformation. It can be put to use in differential phase sections and, also, as an effective dichroic cross-polarization converter (twist polarizer).Key words: chiral metasurface; square dielectric helice; transmission coefficient; polarized wave; cross-polarized waveManuscript submitted 07.11.2023Radio phys. radio astron. 2023, 28(3): 287-294REFERENCES1. Barron, L.D., 2009. Molecular light scattering and optical activity. Cambridge University Press.2. Hecht, E., 2016. Optics. 5th ed. Pearson Education, Harlow, 714 p.3. Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P. and Svirko, Y., 2003. Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett., 83(2), pp. 234—236. DOI: https://doi.org/10.1063/1.15920154. Fedotov, V.A., Mladyonov, P.L., Prosvirnin, S.L., Rogacheva, A.V., Chen, Y., and Zheludev, N.I., 2006. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett., 97(16), pp. 167401. DOI: https://doi.org/10.1103/PhysRevLett.97.1674015. Plum, E., Zhow, J., Dong, J., Fedotov, V.A., Kochny, T., Soukoulis, C.M., and Zheludev, N.I., 2009. Metamaterial with negative index due to chirality. Phys. Rev. B, 79(3), pp. 035407. DOI: https://doi.org/10.1103/PhysRevB.79.0354076. Fang, S., Luan, K., Ma, H.F., Lv, W., Li, Y., Zhu, Z., Guan, C., Shi, J., and Cui, T.J., 2017. Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials. J. Appl. Phys., 121(3), pp. 033103. DOI: https://doi.org/10.1063/1.49744777. Li, Z., Mutlu, M.. and Ozbay, E., 2013. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt., 15(2), pp. 023001. DOI: https://doi.org/10.1088/2040-8978/15/2/0230018. Collins, J.T., Kuppe, C., Hooper, D.C., Sibilia, C., Centini, M., and Valev, V.K., 2017. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater., 5(16), pp. 1700182. DOI: https://doi.org/10.1002/adom.2017001829. Wu, S., Xu, S., Zinenko, T.L., Yachin, V.V., Prosvirnin, S.L., and Tuz, V.R., 2019. 3D-printed chiral metasurface as a dichroic dual-band polarization converter. Opt. Lett., 44(4), pp. 1056—1059. DOI: https://doi.org/10.1364/OL.44.00105610. Wu, S., Yachin, V.V., Shcherbinin, V.I. and Tuz, V.R., 2019. Chiral metasurfaces formed by 3D-printed square helices: A flexible tool to manipulate wave polarization. J. Appl. Phys., 126(10), pp. 103101. DOI: https://doi.org/10.1063/1.511483811. Yachin, V., and Yasumoto, K., 2007. Method of integral functionals for electromagnetic wave scattering from a double-periodic magnetodielectric layer. JOSA A, 24(11), pp. 3606—3618. DOI: https://doi.org/10.1364/JOSAA.24.003606 Предмет і мета роботи. Метою цієї статті є дослідження проходження лінійно-поляризованої електромагнітної хвилі через хіральну метаповерхню, що складається з періодичного ансамблю діелектричних квадратних спіралей. Ми очікуємо, що така метаповерхня має більше функціональних можливостей трансформувати поляризовану хвилю в крос-поляризовану хвилю, ніж метаповерхня, що складається з періодично розташованих металевих квадратних спіралей.Методи та методологія. Для знаходження коефіцієнтів розсіювання такої структури використовується добре випробуваний метод інтегральних функціоналів. У методі використовується набір об’ємних інтегральних рівнянь у векторній формі для еквівалентних електричних і магнітних поляризаційних струмів періодичного шару, що аналізується. Відліковою особливістю методу є те, що спочатку шукаються електромагнітні поля всередині структури, а потім по знайдених полях знаходяться розсіяні структурою поля. Ці рівняння дискретизуються за допомогою інтегральних функціоналів, пов’язаних з поляризаційними струмами, і техніки розкладу полів у подвійні ряди Флоке–Фур’є.Результати. Встановлено, що коефіцієнти проходження через метаповерхню критично залежать від кількості стрижнів, що утворюють квадратні спіральні частинки. У разі парного числа стрижнів хіральна метаповерхня демонструє однакові коефіцієнти проходження для кополяризованих компонент поля в разі падіння лінійно х- і y-поляризованих хвиль на відміну від коефіцієнтів проходження крос-поляризованих компонентів полів, які відрізняються і можуть досягати пікових значень на різних частотах. Також коефіцієнти пропускання цих поляризаторів досліджувалися в залежності від розмірів стрижнів, з яких складаються квадратні спіралі.Висновок. Широке розмаїття властивостей проходження, що спостерігаються в метаповерхні, робить їх особливо привабливими для використання в пристроях перетворення та поділу поляризації. Метаповерхня може мати властивість дихроїчного асиметричного проходження цих хвиль і використовуватися як дихроїчний фільтр із транформацією поляризації в диференціальних фазових секціях, а також як ефективний дихроїчний крос-поляризаційний перетворювач (твістполяризатор).Ключові слова: хіральні метаповерхні; квадратні діелектричні спіралі; коефіцієнт проходження; поляризовані хвилі; кросс-поляризована хвиляСтаття надійшла до редакції 07.11.2023Radio phys. radio astron. 2023, 28(4): 287-294БІБЛІОГРАФІЧНИЙ СПИСОК1. Barron L.D. Molecular light scattering and optical activity. Cambridge University Press, 2009.2. Hecht E. Optics. 5th ed. Pearson Education, Harlow, 2016.3. Vallius T., Jefimovs K., Turunen J., Vahimaa P., and Svirko Y. Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett. 2003. Vol. 83, Iss. 2. P. 234—236. DOI: 10.1063/1.15920154. Fedotov V.A., Mladyonov P.L., Prosvirnin S.L., Rogacheva A.V., Chen Y., and Zheludev N.I. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 2006. Vol. 97, Iss. 16. P. 167401. DOI: 10.1103/PhysRevLett.97.1674015. Plum E., Zhow J., Dong J., Fedotov V.A., Kochny T., Soukoulis C.M., and Zheludev N.I. Metamaterial with negative index due to chirality. Phys. Rev. B. 2009. Vol. 79, Iss. 3. P. 035407. DOI:10.1103/PhysRevB.79.0354076. Fang S., Luan K., Ma H.F., Lv W., Li Y., Zhu Z., Guan C., Shi J., and Cui T.J. Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials. J. Appl. Phys. 2017. Vol. 121, Iss. 3. P. 033103. DOI: 10.1063/1.49744777. Li Z., Mutlu M., and Ozbay E., Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt. 2013. Vol. 15, Iss. 2. P. 023001. DOI: 10.1088/2040-8978/15/2/0230018. Collins J.T., Kuppe C., Hooper D.C., Sibilia C., Centini M., and Valev V.K., Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 2017. Vol. 5, Iss. 16. P. 1700182. DOI: 10.1002/adom.2017001829. Wu S., Xu S., Zinenko T.L., Yachin V.V., Prosvirnin S.L., and Tuz V.R. 3D-printed chiral metasurface as a dichroic dual-band polarization converter. Opt. Lett. 2019. Vol. 44, Iss. 4. P. 1056—1059. DOI: 10.1364/OL.44.00105610. Wu S., Yachin V.V., Shcherbinin V.I., and Tuz V.R. Chiral metasurfaces formed by 3D-printed square helices: A flexible tool to manipulate wave polarization. J. Appl. Phys. 2019. Vol. 126, Iss. 10. P. 103101. DOI: 10.1063/1.511483811. Yachin V., and Yasumoto, K. Method of integral functionals for electromagnetic wave scattering from a double-periodic magnetodielectric layer. JOSA A. 2007. Vol. 24, Iss. 11. P. 3606—3618. DOI: 10.1364/josaa.24.003606 Видавничий дім «Академперіодика» 2023-12-08 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1426 10.15407/rpra28.04.287 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 28, No 4 (2023); 287 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 28, No 4 (2023); 287 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 28, No 4 (2023); 287 2415-7007 1027-9636 10.15407/rpra28.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1426/pdf Copyright (c) 2023 RADIO PHYSICS AND RADIO ASTRONOMY |