EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY

Subject and Purpose. The research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane rotation ability are influenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of conjugated irises having rectangu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Kirilenko, A. O., Steshenko, S. O., Ostryzhnyi, Y. M., Derkach, V. M.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2024
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1432
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1432
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2024-03-26T08:17:23Z
collection OJS
language English
topic
spellingShingle
Kirilenko, A. O.
Steshenko, S. O.
Ostryzhnyi, Y. M.
Derkach, V. M.
EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
topic_facet
власні коливання
двошарові об’єкти
3D-кіральність
штучна оптична активність
діедральна симетрія
планарно-кіральні діафрагми
перетворювачі поляризації
format Article
author Kirilenko, A. O.
Steshenko, S. O.
Ostryzhnyi, Y. M.
Derkach, V. M.
author_facet Kirilenko, A. O.
Steshenko, S. O.
Ostryzhnyi, Y. M.
Derkach, V. M.
author_sort Kirilenko, A. O.
title EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
title_short EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
title_full EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
title_fullStr EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
title_full_unstemmed EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY
title_sort eigen-oscillations of planar-chiral bilayer objects give rise to artificial optical activity
title_alt ВЛАСНІ КОЛИВАННЯ В ПЛАНАРНО-КІРАЛЬНИХ ДВОШАРОВИХ ОБ’ЄКТАХ ПОРОДЖУЮТЬ ШТУЧНУ ОПТИЧНУ АКТИВНІСТЬ
description Subject and Purpose. The research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane rotation ability are influenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of conjugated irises having rectangular slots and accommodated in a circular waveguide.Methods and Methodology. All the numerical results are obtained by the mode-matching technique (MMT) and the transverse resonance method on the basis of our own proprietary MWD-03 software package.Results. By the waveguide example, it has been shown that the internal structure of individual components and dihedral symmetry of the conjugated bilayer allow all the conclusions of the spectral theory (theory of eigen-oscillations) to be carried over to all the objects of the type. On the other hand, these objects behave as symmetric two-port waveguide components with conventionally "symmetric" and "antisymmetric" eigen-oscillations. The mutual coupling of these eigen-oscillations depends on the bilayer parameters. Where the frequencies of these eigen-oscillations are close enough, the polarization plane rotation and the transmission bandwidth reach their highest. It has been demonstrated that as a slot number increases, the resonance frequency decreases. The theoretical results have been confirmed by the measurements at the X range of frequencies for pairs of conjugated irises with various numbers of rectangular slots.Conclusions. A pair of conjugated chiral irises can rotate the polarization plane. The iris topology, iris spacing, and the mutual rotation angle alter resonance frequencies. The resonance frequencies can be reduced by increasing the rectangular slot length and/or slot number. Even though they have not longitudinal symmetry, such objects have properties of two-port waveguide components. In particular, the phase shift of their reflection and transmission coefficients is modulo 90°. Besides, a possibility exists to divide eigen-oscillations into conventionally "symmetric" and "antisymmetric" based on the proximity of their fields to those whose type of symmetry is known before- hand. This makes it possible to approximate the reflection and transmission coefficients through corresponding eigenfrequencies.Keywords: eigen-oscillations, bilayer objects, 3D-chirality, artificial optical activity, dihedral symmetry, planar-chiral irises, polarization converters,Manuscript submitted 04.12.2023Radio phys. radio astron. 2024, 29(1): 015-025REFERENCES1. Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S., and Zheludev, N. I., 2006. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., 97(17), id. 177401. DOI: https://doi.org/10.1103/PhysRevLett.97.1774012. Zhao, R., Zhang, L., Zhou, J., Koschny, Th., and Soukoulis, C. M., 2011. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B, 83(3), id. 035105. DOI: https://doi.org/10.1103/PhysRevB.83.035105 3. Song, K., Ding, C., Su, Z., Liu, Y., Luo, C., Zhao, X., Bhattarai, K., and Zhou, J., 2016. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission. J. Appl. Phys., 120(24), id. 245102. DOI: https://doi.org/10.1063/1.49729774. Zarifi, D., Soleimani, M., and Nayyeri, V., 2012. A Novel Dual-Band Chiral Metamaterial Structure with Giant Optical Activity and Negative Refractive Index. J. Electromagn. Waves Appl., 26(2—3), pp. 251—263. DOI: https://doi.org/10.1163/1569393128000307675. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Prikolotin, S. A., Kulik, D. Y., Prosvirnin, S. L., and Mospan, L. P., 2017. Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies. Radioelectron. Commun. Syst., 60(5), pp. 193—205. DOI: https://doi.org/10.3103/S07352727170500166. Kirilenko, A., Kolmakova, N., Prikolotin, S., and Perov, A., 2013. Simple example of polarization plane rotation by the fringing fields interaction. In: Proc. EuMW, 6—10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, pp. 936—938.7. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Ostrizhnyi, Y. M., and Mospan, L. P., 2020. Tunable polarization rotator on a pair of grooved flanges. J. Electromagn. Waves Appl., 34(17), pp. 2304—2316. DOI: https://doi.org/10.1080/09205071.2020.18124428. Giloan, M., Gutt, R., and Saplacan, G., 2015. Optical chiral metamaterial based on meta-atoms with three-fold rotational symme- try arranged in hexagonal lattice. J. Opt., 17(8), id. 085102. DOI: https://doi.org/10.1088/2040-8978/17/8/0851029. Bai, B., Svirko, Y., Turunen, J., and Vallius, T., 2007. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A., 76(2), id. 023811. DOI: https://doi.org/10.1103/PhysRevA.76.02381110. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostryzhnyi, Y.M., 2019. A tunable compact polarizer in a circular waveguide. IEEE Trans. Microw. Theory Tech., 67(2), pp. 592—596. DOI: https://doi.org/10.1109/TMTT.2018.288108911. MacPhie, R.H., and Wu, K.L., 1995. Scattering at the junction of a rectangular waveguide and a larger circular waveguide. IEEE Trans. Microw. Theory Tech., 43(9), pp. 2041—2045. DOI: https://doi.org/10.1109/22.41453812. Kirilenko, A.A., Steshenko, S., and Ostryzhnyi, Y., 2020. Topology of a Planar-chiral Iris as a Factor in Controlling the "Optical Ac- tivity" of a Bilayer Object. In: 2020 IEEE Ukrainian Microwave Week (IEEE UkrMW): proc., 21—25 Sept. 2020, Kharkiv, Ukraine, 2020, pp. 555—558. DOI: https://doi.org/10.1109/UkrMW49653.2020.925266913. Kolmakova, N.G., Perov, A.O., Senkevich, S.L., and Kirilenko, A.A., 2011. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., 54(3), pp. 115—123. DOI: https://doi.org/10.3103/S073527271103001014. Kirilenko, A.A., and Perov, A.O., 2008. On the common nature of the enhanced and resonance transmission through the period- ical set of holes. IEEE Trans. Antennas Propag., 56(10), pp. 3210—3216. DOI: https://doi.org/10.1109/TAP.2008.92943715. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostrizhnyi, Y.M., 2019. Comparative analysis of tunable compact rotators. J. Electromagn. Waves Appl., 33(3), pp. 304—319. DOI: https://doi.org/10.1080/09205071.2018.155044316. Mackay, A., 1989. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting with special reference to rotational symmetry frequency-selective surfaces. Electron. Lett., 25(24), pp. 1624—1625. DOI: https://doi.org/10.1049/el:1989108817. Kirilenko, A.A., and Tysik, B.G., 1993. Connection of S-matrix of Waveguide and Periodical Structures with Complex Frequency Spectrum. Electromagnetics, 13(3), pp. 301—318. DOI: https://doi.org/10.1080/0272634930890835218. Melezhik, P.N., Poyedinchuk, A.Y., Tuchkin, Y.A., and Shestopalov, V.P., 1988. About analytical origins of eigenmode coupling. Sov. Phys. Dokl., 300(6), pp. 1356—1359.19. Yakovlev, A.B., and Hanson, G.W., 1998. Analysis of mode coupling on guided-wave structures using Morse critical points. IEEE Trans. Microw. Theory Tech., 46(7), pp. 966—974. DOI: https://doi.org/10.1109/22.70145020. Kolmakova, N., Prikolotin, S., Perov, A., Derkach, V., Kirilenko, A., 2016. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microw. Theory Tech., 64(2), pp. 429—436. DOI: https://doi.org/10.1109/TMTT.2015.2509966
publisher Видавничий дім «Академперіодика»
publishDate 2024
url http://rpra-journal.org.ua/index.php/ra/article/view/1432
work_keys_str_mv AT kirilenkoao eigenoscillationsofplanarchiralbilayerobjectsgiverisetoartificialopticalactivity
AT steshenkoso eigenoscillationsofplanarchiralbilayerobjectsgiverisetoartificialopticalactivity
AT ostryzhnyiym eigenoscillationsofplanarchiralbilayerobjectsgiverisetoartificialopticalactivity
AT derkachvm eigenoscillationsofplanarchiralbilayerobjectsgiverisetoartificialopticalactivity
AT kirilenkoao vlasníkolivannâvplanarnokíralʹnihdvošarovihobêktahporodžuûtʹštučnuoptičnuaktivnístʹ
AT steshenkoso vlasníkolivannâvplanarnokíralʹnihdvošarovihobêktahporodžuûtʹštučnuoptičnuaktivnístʹ
AT ostryzhnyiym vlasníkolivannâvplanarnokíralʹnihdvošarovihobêktahporodžuûtʹštučnuoptičnuaktivnístʹ
AT derkachvm vlasníkolivannâvplanarnokíralʹnihdvošarovihobêktahporodžuûtʹštučnuoptičnuaktivnístʹ
first_indexed 2025-12-02T15:26:52Z
last_indexed 2025-12-02T15:26:52Z
_version_ 1851757477250465792
spelling rpra-journalorgua-article-14322024-03-26T08:17:23Z EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY ВЛАСНІ КОЛИВАННЯ В ПЛАНАРНО-КІРАЛЬНИХ ДВОШАРОВИХ ОБ’ЄКТАХ ПОРОДЖУЮТЬ ШТУЧНУ ОПТИЧНУ АКТИВНІСТЬ Kirilenko, A. O. Steshenko, S. O. Ostryzhnyi, Y. M. Derkach, V. M. власні коливання; двошарові об’єкти; 3D-кіральність; штучна оптична активність; діедральна симетрія; планарно-кіральні діафрагми; перетворювачі поляризації Subject and Purpose. The research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane rotation ability are influenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of conjugated irises having rectangular slots and accommodated in a circular waveguide.Methods and Methodology. All the numerical results are obtained by the mode-matching technique (MMT) and the transverse resonance method on the basis of our own proprietary MWD-03 software package.Results. By the waveguide example, it has been shown that the internal structure of individual components and dihedral symmetry of the conjugated bilayer allow all the conclusions of the spectral theory (theory of eigen-oscillations) to be carried over to all the objects of the type. On the other hand, these objects behave as symmetric two-port waveguide components with conventionally "symmetric" and "antisymmetric" eigen-oscillations. The mutual coupling of these eigen-oscillations depends on the bilayer parameters. Where the frequencies of these eigen-oscillations are close enough, the polarization plane rotation and the transmission bandwidth reach their highest. It has been demonstrated that as a slot number increases, the resonance frequency decreases. The theoretical results have been confirmed by the measurements at the X range of frequencies for pairs of conjugated irises with various numbers of rectangular slots.Conclusions. A pair of conjugated chiral irises can rotate the polarization plane. The iris topology, iris spacing, and the mutual rotation angle alter resonance frequencies. The resonance frequencies can be reduced by increasing the rectangular slot length and/or slot number. Even though they have not longitudinal symmetry, such objects have properties of two-port waveguide components. In particular, the phase shift of their reflection and transmission coefficients is modulo 90°. Besides, a possibility exists to divide eigen-oscillations into conventionally "symmetric" and "antisymmetric" based on the proximity of their fields to those whose type of symmetry is known before- hand. This makes it possible to approximate the reflection and transmission coefficients through corresponding eigenfrequencies.Keywords: eigen-oscillations, bilayer objects, 3D-chirality, artificial optical activity, dihedral symmetry, planar-chiral irises, polarization converters,Manuscript submitted 04.12.2023Radio phys. radio astron. 2024, 29(1): 015-025REFERENCES1. Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S., and Zheludev, N. I., 2006. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., 97(17), id. 177401. DOI: https://doi.org/10.1103/PhysRevLett.97.1774012. Zhao, R., Zhang, L., Zhou, J., Koschny, Th., and Soukoulis, C. M., 2011. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B, 83(3), id. 035105. DOI: https://doi.org/10.1103/PhysRevB.83.035105 3. Song, K., Ding, C., Su, Z., Liu, Y., Luo, C., Zhao, X., Bhattarai, K., and Zhou, J., 2016. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission. J. Appl. Phys., 120(24), id. 245102. DOI: https://doi.org/10.1063/1.49729774. Zarifi, D., Soleimani, M., and Nayyeri, V., 2012. A Novel Dual-Band Chiral Metamaterial Structure with Giant Optical Activity and Negative Refractive Index. J. Electromagn. Waves Appl., 26(2—3), pp. 251—263. DOI: https://doi.org/10.1163/1569393128000307675. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Prikolotin, S. A., Kulik, D. Y., Prosvirnin, S. L., and Mospan, L. P., 2017. Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies. Radioelectron. Commun. Syst., 60(5), pp. 193—205. DOI: https://doi.org/10.3103/S07352727170500166. Kirilenko, A., Kolmakova, N., Prikolotin, S., and Perov, A., 2013. Simple example of polarization plane rotation by the fringing fields interaction. In: Proc. EuMW, 6—10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, pp. 936—938.7. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Ostrizhnyi, Y. M., and Mospan, L. P., 2020. Tunable polarization rotator on a pair of grooved flanges. J. Electromagn. Waves Appl., 34(17), pp. 2304—2316. DOI: https://doi.org/10.1080/09205071.2020.18124428. Giloan, M., Gutt, R., and Saplacan, G., 2015. Optical chiral metamaterial based on meta-atoms with three-fold rotational symme- try arranged in hexagonal lattice. J. Opt., 17(8), id. 085102. DOI: https://doi.org/10.1088/2040-8978/17/8/0851029. Bai, B., Svirko, Y., Turunen, J., and Vallius, T., 2007. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A., 76(2), id. 023811. DOI: https://doi.org/10.1103/PhysRevA.76.02381110. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostryzhnyi, Y.M., 2019. A tunable compact polarizer in a circular waveguide. IEEE Trans. Microw. Theory Tech., 67(2), pp. 592—596. DOI: https://doi.org/10.1109/TMTT.2018.288108911. MacPhie, R.H., and Wu, K.L., 1995. Scattering at the junction of a rectangular waveguide and a larger circular waveguide. IEEE Trans. Microw. Theory Tech., 43(9), pp. 2041—2045. DOI: https://doi.org/10.1109/22.41453812. Kirilenko, A.A., Steshenko, S., and Ostryzhnyi, Y., 2020. Topology of a Planar-chiral Iris as a Factor in Controlling the "Optical Ac- tivity" of a Bilayer Object. In: 2020 IEEE Ukrainian Microwave Week (IEEE UkrMW): proc., 21—25 Sept. 2020, Kharkiv, Ukraine, 2020, pp. 555—558. DOI: https://doi.org/10.1109/UkrMW49653.2020.925266913. Kolmakova, N.G., Perov, A.O., Senkevich, S.L., and Kirilenko, A.A., 2011. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., 54(3), pp. 115—123. DOI: https://doi.org/10.3103/S073527271103001014. Kirilenko, A.A., and Perov, A.O., 2008. On the common nature of the enhanced and resonance transmission through the period- ical set of holes. IEEE Trans. Antennas Propag., 56(10), pp. 3210—3216. DOI: https://doi.org/10.1109/TAP.2008.92943715. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostrizhnyi, Y.M., 2019. Comparative analysis of tunable compact rotators. J. Electromagn. Waves Appl., 33(3), pp. 304—319. DOI: https://doi.org/10.1080/09205071.2018.155044316. Mackay, A., 1989. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting with special reference to rotational symmetry frequency-selective surfaces. Electron. Lett., 25(24), pp. 1624—1625. DOI: https://doi.org/10.1049/el:1989108817. Kirilenko, A.A., and Tysik, B.G., 1993. Connection of S-matrix of Waveguide and Periodical Structures with Complex Frequency Spectrum. Electromagnetics, 13(3), pp. 301—318. DOI: https://doi.org/10.1080/0272634930890835218. Melezhik, P.N., Poyedinchuk, A.Y., Tuchkin, Y.A., and Shestopalov, V.P., 1988. About analytical origins of eigenmode coupling. Sov. Phys. Dokl., 300(6), pp. 1356—1359.19. Yakovlev, A.B., and Hanson, G.W., 1998. Analysis of mode coupling on guided-wave structures using Morse critical points. IEEE Trans. Microw. Theory Tech., 46(7), pp. 966—974. DOI: https://doi.org/10.1109/22.70145020. Kolmakova, N., Prikolotin, S., Perov, A., Derkach, V., Kirilenko, A., 2016. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microw. Theory Tech., 64(2), pp. 429—436. DOI: https://doi.org/10.1109/TMTT.2015.2509966 Предмет і мета роботи — дослідження впливу топології окремих компонентів планарно-кірального двошарового об’єкта, що складається з пари спряжених діафрагм з прямокутними щілинами у круглому хвилеводі, на його резонансні частоти, добротність резонансів та на здатність обертати площину поляризації.Методи та методологія. Усі чисельні результати були отримані за допомогою власного програмного забезпечення MWD- 03 на основі методу часткових областей і методу поперечного резонансу.Результати. На прикладі хвилеводу показано, що внутрішня структура окремих компонентів і діедральна симетрія спряженого бішару дозволяють поширити висновки спектральної теорії (теорії власних коливань) на всі такі об’єкти. З іншого боку, вони поводяться як симетричні двопортові хвилевідні вузли з умовними «симетричними» та «антисиметричними» власними коливаннями. Взаємний вплив цих власних коливань залежить від параметрів бішару, і саме в зоні зближення їх частот досягаються максимальний поворот площини поляризації і найширша смуга пропускання. Показано, що збільшення кількості щілин зменшує резонансну частоту. Теоретичні результати підтверджені експериментальними вимірюваннями, проведеними для пар спряжених діафрагм з різною кількістю прямокутних щілин в X-діапазоні частот.Висновки.Пара спряжених кіральних діафрагм може використовуватися для обертання площини поляризації. Топологія діафрагм, відстань між ними і взаємний кут повороту впливають на резонансні частоти. Знизити резонансні частоти можна, збільшуючи довжину прямокутних щілин і/або їх кількість. Незважаючи на відсутність поздовжньої симетрії, такі об’єкти мають властивості двопортових хвилевідних вузлів. Зокрема, фазовий зсув їх коефіцієнтів відбиття і проходження за модулем становить 90°. До того ж можливість поділу власних коливань на умовні «симетричні» і «антисиметричні» за близькістю їх полів до полів коливань відповідної симетрії дозволяє використовувати наближені формули для апроксимації коефіцієнтів відбиття і проходження через власні частоти.Ключові слова: власні коливання; двошарові об’єкти; 3D-кіральність; штучна оптична активність; діедральна симетрія; планарно-кіральні діафрагми; перетворювачі поляризаціїСтаття надійшла до редакції 04.12.2023Radio phys. radio astron. 2024, 29(1): 015-025REFERENCES1. Rogacheva, A.V., Fedotov, V.A., Schwanecke, A.S., and Zheludev, N.I., 2006. Giant gyrotropy due to electromagnetic-field cou- pling in a bilayered chiral structure. Phys. Rev. Lett., 97(17), id. 177401. DOI: 10.1103/PhysRevLett.97.1774012. Zhao, R., Zhang, L., Zhou, J., Koschny, Th., and Soukoulis, C.M., 2011. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B, 83(3), id. 035105. DOI: 10.1103/PhysRevB.83.035105 3. Song, K., Ding, C., Su, Z., Liu, Y., Luo, C., Zhao, X., Bhattarai, K., and Zhou, J., 2016. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission. J. Appl. Phys., 120(24), id. 245102. DOI: 10.1063/1.49729774. Zarifi, D., Soleimani, M., and Nayyeri, V., 2012. A Novel Dual-Band Chiral Metamaterial Structure with Giant Optical Activity and Negative Refractive Index. J. Electromagn. Waves Appl., 26(2—3), pp. 251—263. DOI: 10.1163/1569393128000307675. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., Prikolotin, S.A., Kulik, D.Y., Prosvirnin, S.L., and Mospan, L.P., 2017. Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies. Radioelectron. Commun. Syst., 60(5), pp. 193—205. DOI: 10.3103/S07352727170500166. Kirilenko, A., Kolmakova, N., Prikolotin, S., and Perov, A., 2013. Simple example of polarization plane rotation by the fringing fields interaction. In: Proc. EuMW, 6—10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, pp. 936—938.7. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., Ostrizhnyi, Y.M., and Mospan, L.P., 2020. Tunable polarization rotator on a pair of grooved flanges. J. Electromagn. Waves Appl., 34(17), pp. 2304—2316. DOI: 10.1080/09205071.2020.18124428. Giloan, M., Gutt, R., and Saplacan, G., 2015. Optical chiral metamaterial based on meta-atoms with three-fold rotational symme- try arranged in hexagonal lattice. J. Opt., 17(8), id. 085102. DOI: 10.1088/2040-8978/17/8/0851029. Bai, B., Svirko, Y., Turunen, J., and Vallius, T., 2007. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A., 76(2), id. 023811. DOI: 10.1103/PhysRevA.76.02381110. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostryzhnyi, Y.M., 2019. A tunable compact polarizer in a circular waveguide. IEEE Trans. Microw. Theory Tech., 67(2), pp. 592—596. DOI: 10.1109/TMTT.2018.288108911. MacPhie, R.H., and Wu, K.L., 1995. Scattering at the junction of a rectangular waveguide and a larger circular waveguide. IEEE Trans. Microw. Theory Tech., 43(9), pp. 2041—2045. DOI: 10.1109/22.41453812. Kirilenko, A.A., Steshenko, S., and Ostryzhnyi, Y., 2020. Topology of a Planar-chiral Iris as a Factor in Controlling the "Optical Ac- tivity" of a Bilayer Object. In: 2020 IEEE Ukrainian Microwave Week (IEEE UkrMW): proc., 21—25 Sept. 2020, Kharkiv, Ukraine, 2020, pp. 555—558.13. Kolmakova, N.G., Perov, A.O., Senkevich, S.L., and Kirilenko, A.A., 2011. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., 54(3), pp. 115—123. DOI: 10.3103/S073527271103001014. Kirilenko, A.A., and Perov, A.O., 2008. On the common nature of the enhanced and resonance transmission through the period- ical set of holes. IEEE Trans. Antennas Propag., 56(10), pp. 3210—3216. DOI: 10.1109/TAP.2008.92943715. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostrizhnyi, Y.M., 2019. Comparative analysis of tunable compact rotators. J. Electromagn. Waves Appl., 33(3), pp. 304—319. DOI:  10.1080/09205071.2018.155044316. Mackay, A., 1989. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting with special reference to rotational symmetry frequency-selective surfaces. Electron. Lett., 25(24), pp. 1624—1625. DOI: 10.1049/el:1989108817. Kirilenko, A.A., and Tysik, B.G., 1993. Connection of S-matrix of Waveguide and Periodical Structures with Complex Frequency Spectrum. Electromagnetics, 13(3), pp. 301—318. DOI: 10.1080/0272634930890835218. Melezhik, P.N., Poyedinchuk, A.Y., Tuchkin, Y.A., and Shestopalov, V.P., 1988. About analytical origins of eigenmode coupling. Sov. Phys. Dokl., 300(6), pp. 1356—1359.19. Yakovlev, A.B., and Hanson, G.W., 1998. Analysis of mode coupling on guided-wave structures using Morse critical points. IEEE Trans. Microw. Theory Tech., 46(7), pp. 966—974. DOI: 10.1109/22.70145020. Kolmakova, N., Prikolotin, S., Perov, A., Derkach, V., Kirilenko, A., 2016. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microw. Theory Tech., 64(2), pp. 429—436. DOI: 10.1109/TMTT.2015.2509966 Видавничий дім «Академперіодика» 2024-03-11 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1432 10.15407/rpra29.01.015 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 29, No 1 (2024); 15 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 29, No 1 (2024); 15 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 29, No 1 (2024); 15 2415-7007 1027-9636 10.15407/rpra29.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1432/pdf Copyright (c) 2024 RADIO PHYSICS AND RADIO ASTRONOMY