FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS
Subject and Purpose. Currently, numerous ideas and different methods have been in growth for generating vortex beams — areas of the circular motion of the electromagnetic wave energy flow around the so-called phase singularity points caused by a violation of the wave front topological structure. The...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | , , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2024
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1442 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1442 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2024-07-01T12:16:48Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
terahertz laser waveguide resonator spiral phase plate vortex beams polarization radiation propagation |
| spellingShingle |
terahertz laser waveguide resonator spiral phase plate vortex beams polarization radiation propagation Degtyarev, A. V. Dubinin, M. M. Maslov, V. A. Muntean, K. I. Svistunov, O. O. FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| topic_facet |
terahertz laser waveguide resonator spiral phase plate vortex beams polarization radiation propagation терагерцовий лазер хвилевідний резонатор спіральна фазова пластинка вихрові пучки поляризація поширення випромінювання |
| format |
Article |
| author |
Degtyarev, A. V. Dubinin, M. M. Maslov, V. A. Muntean, K. I. Svistunov, O. O. |
| author_facet |
Degtyarev, A. V. Dubinin, M. M. Maslov, V. A. Muntean, K. I. Svistunov, O. O. |
| author_sort |
Degtyarev, A. V. |
| title |
FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| title_short |
FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| title_full |
FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| title_fullStr |
FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| title_full_unstemmed |
FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS |
| title_sort |
free-space propagation of terahertz laser vortex beams |
| title_alt |
ПОШИРЕННЯ ТЕРАГЕРЦОВИХ ВИХРОВИХ ЛАЗЕРНИХ ПУЧКІВ У ВІЛЬНОМУ ПРОСТОРІ |
| description |
Subject and Purpose. Currently, numerous ideas and different methods have been in growth for generating vortex beams — areas of the circular motion of the electromagnetic wave energy flow around the so-called phase singularity points caused by a violation of the wave front topological structure. The purpose of this work is to obtain analytical expressions describing the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser during the wave mode interaction with a spiral phase plate. The resulting vortex beams are examined for their physical features in free space propagation.Methods and Methodology. The Rayleigh-Sommerfeld vector theory is adopted to consider the propagation of vortex laser beams generated by wave modes of the quasi-optical waveguide cavity when interacting with a spiral phase plate in different diffraction zones.Results. For the first time, analytical expressions have been obtained to describe the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser, when resonator modes interact with a spiral phase plate at different topological charges, n. The physical features of the resulting vortex beams were studied in their free space propagation. It has been shown that a spiral phase plate modifies the structure of the linearly polarized EH₁₁ mode so that the original (n=0) intensity profile with the maximum energy at the center turns at n=1 and 2 into a ring-like donut shape with an energy hole in the center. The azimuthally polarized TE₀₁ mode has originally (n=0) a ring-shaped intensity. At n=1, this configuration changes to have the maximum intensity in the center. At n=2, it becomes annular again. In the process, the spherical phase front of the beam of the linearly polarized EH₁₁ mode becomes spiral and have one singularity point on the axis, whereas the phase structure of the azimuthally polarized TE₀₁ mode gains a region with two phase singularity points off the axis.Conclusions. The results of the study can effectively facilitate information transfer in high-speed THz communication systems. They can provide a real platform to perform tasks related to tomography, exploring properties of materials, detecting astrophysical sources, which makes them very promising in modern technologies.Keywords: terahertz laser; waveguide resonator; spiral phase plate; vortex beams; polarization; radiation propagationManuscript submitted 11.12.2023Radio phys. radio astron. 2024, 29(2): 127-136REFERENCES1. Headland, D., Monnai, Y., Abbott, D., Christophe, F., and Withawat, W., 2018. Tutorial: Terahertz beamforming, from concepts to realizations. APL. Photonics, 3(5), pp. 051101. DOI: https://doi.org/10.1063/1.50110632. Forbes, A., 2023. Advances in orbital angular momentum lasers. J. Light. Technol., 41(7), pp. 2079—2086. DOI: https://doi.org/10.1109/JLT.2022.32205093. Wang, H., Song, Q., Cai, Y., Lin, Q., Lu, X., Shangguan, H., Ai, Y., and Xu, Y., 2020. Recent advances in generation of terahertz vortex beams and their applications. Chin. Phys. B., 29(9), pp. 097404. DOI: https://doi.org/10.1088/1674-1056/aba2df4. Petrov, N.V., Sokolenko, B., Kulya, M.S., Gorodetsky, A., and Chernykh, A.V., 2022. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light: Adv. Manuf., 3(4), pp. 640—652. DOI: https://doi.org/10.37188/lam.2022.0435. Nagatsuma, T., Ducournau, G., and Renaud, C.C., 2016. Advances in terahertz communications accelerated by photonics. Nat. Photonics., 10(6), pp. 371—379. DOI: https://doi.org/10.1038/nphoton.2016.65 6. Chen, S., C., Feng, Z., Li, J., Tan, W., Du, L., H., Cai, J., and Zhu, L.G., 2020. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl., 9(1), 99. DOI: https://doi.org/10.1038/s41377-020-0338-47. Nobahar, D., Khorram, S., 2022. Terahertz vortex beam propagation through a magnetized plasma-ferrite structure. Opt. Laser Technol., 146, 107522. DOI: https://doi.org/10.1016/j.optlastec.2021.1075228. Hibberd, M.T., Healy, A.L., Lake, D.S., Georgiadis, V., Smith, E.J., Finlay, O.J., and Jamison, S.P, 2019. Acceleration of relativistic beams using laser generated terahertz pulses. Nat. Photonics, 14(12), pp. 755—759. DOI: https://doi.org/10.1038/s41566-020-0674-19. Klug, A., Nape, I., and Forbes, A., 2021. The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields. New J. Phys., 23(9), 093012. DOI: https://doi.org/10.1088/1367-2630/ac1fca10. Pinnock, S.W., Roh, S., Biesner, T., Pronin, A.V., and Dressel, M., 2022. Generation of THz vortex beams and interferometric determination of their topological charge. IEEETrans. Terahertz Sci. Technol., 13(1), pp. 44—49. DOI: https://doi.org/10.1109/TTHZ.2022.322136911. Rubano, A., Cardano, F., Piccirillo, B., and Marrucci, L., 2019. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B., 36(5), pp. D70—D87. DOI: https://doi.org/10.1364/JOSAB.36.000D7012. Imai, R., Kanda, N., Higuchi, T., Konishi, K., and Kuwata-Gonokami, M., 2014. Generation of broadband terahertz vortex beams. Opt. Lett., 39(13), pp. 3714—3717. DOI: https://doi.org/10.1364/OL.39.00371413. Yang, Y., Ye, X., Niu, L., Wang, K., Yang, Z., and Liu, J., 2020. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express, 28(2), pp. 1417—1425. DOI: https://doi.org/10.1364/OE.38007614. Zhang, K., Wang, Y., Burokur, S.N., and Wu, Q., 2022. Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings. IEEE Trans. Microw. Theory Techn., 70(1), pp. 200—209. DOI: https://doi.org/10.1109/TMTT.2021.307525115. Zhang, X.D., Su, Y.H., Ni, J.C., Wang, Z.Y., Wang, Y.L., Wang, C.W., and Chu, J.R., 2017. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating. Appl. Phys. Lett., 111(6), 061901. DOI: https://doi.org/10.1063/1.499759016. Ge, S.J., Shen, Z.X., Chen, P., Liang, X., Wang, X.K., Hu, W., and Lu, Y.Q., 2017. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors. Crystals, 7(10), 314. DOI: https://doi.org/10.3390/cryst710031417. Guan, S., Cheng, J., and Chang, S., 2022. Recent progress of terahertz spatial light modulators: materials, principles and applications. Micromachines, 13(10), 1637. DOI: https://doi.org/10.3390/mi1310163718. Al Dhaybi, A., Degert, J., Brasselet, E., Abraham, E., and Freysz, E.A., 2019. Terahertz vortex beam generation by infrared vector beam rectification. J. Opt. Soc. Am. B., 36(1), pp. 12—18. DOI: https://doi.org/10.1364/JOSAB.36.00001219. Miyamoto, K., Sano, K., Miyakawa, T., Niinomi, H., Toyoda, K., Vallés, A., and Omatsu, T., 2019. Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation. Opt. Express, 27(22), pp. 31840—31849. DOI: https://doi.org/10.1364/OE.27.03184020. Sobhani, H., and Dadar, E., 2019. Terahertz vortex generation methods in rippled and vortex plasmas. J. Opt. Soc. Am. A., 36(7), pp. 1187—1196. DOI: https://doi.org/10.1364/JOSAA.36.00118721. Chevalier, P., Amirzhan, A., Wang, F., Piccardo, M., Johnson, S.G., Capasso, F., and Everitt, H.O., 2019. Widely tunable compact terahertz gas laser. Science, 366(6467), pp. 856—860. DOI: https://doi.org/10.1126/science.aay868322. Farhoomand, J., and Pickett, H.M., 1987. Stable 1.25 watts CW far infrared laser radiation at the 119 μm methanol line. Int. J. Infrared Millim. Waves, 8(5), pp 41—447. DOI: https://doi.org/10.1007/BF0101325723. Marcatilі, E.A.J., and Schmeltzer, R.A., 1964, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J., 43(4), pp. 1783—1809. DOI: https://doi.org/10.1002/j.1538-7305.1964.tb04108.x24. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., and Woerdman, J.P., 1994. Helical-wavefront laser beams produced with a spiral phase plate. Opt. Commun., 112(5—6), pp. 321—327. DOI: https://doi.org/10.1016/0030-4018(94)90638-625. Kotlyar, V.V., and Kovalev, A.A., 2010. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. J. Opt. Soc. Am. A., 27(3), pp. 372—380. DOI: https://doi.org/10.1364/JOSAA.27.00037226. Gu, B., and Cui, Y., 2012. Nonparaxial and paraxial focusing of azimuthal-variant vector beams. Opt. Express, 20(16), pp. 17684— 17694. DOI: https://doi.org/10.1364/OE.20.01768427. Zhang, Y., Wang, L., and Zheng, C., 2005. Vector propagation of radially polarized Gaussian beams diffracted by an axicon. J. Opt. Soc. Am. A., 22(11), pp. 2542—2546. DOI: https://doi.org/10.1364/JOSAA.22.00254228. Lu, B., and Duan, K., 2003. Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture. Opt. Lett., 28(24), pp. 2440—2442. DOI: https://doi.org/10.1364/OL.28.00244029. Jia, X., Wang, Y., and Li, B., 2010. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture. Opt. Express, 18(7), pp. 7064—7075. DOI: https://doi.org/10.1364/OE.18.00706430. Cui, X., Wang, C., and Jia, X., 2019. Nonparaxial propagation of vector vortex beams diffracted by a circular aperture. J. Opt. Soc. Am. A, 36(1), pp. 115—123. DOI: https://doi.org/10.1364/JOSAA.36.00011531. Nye, J.F., and Berry, M.V., 1974. Dislocations in wave trains. Proc. R. Soc. London. Ser. A., 336(1605), pp. 165—190. DOI: https://doi.org/10.1098/rspa.1974.001232. Gurin, O.V., Degtyarev, A.V., Dubinin, N.N., Legenkiy, M.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N., and Senyuta, V.S., 2021. Formation of beams with nonuniform polarisation of radiation in a cw waveguide terahertz laser. Quantum Electron., 51(4), pp. 338—342. DOI: https://doi.org/10.1070/QEL1751133. Gurin, O.V., Degtyarev, А.V., Dubinin, M.M., Maslov, V.A., Muntean, K.I., Ryabykh, V.N., and Senyuta, V.S., 2020. Focusing of modes with an inhomogeneous spatial polarization of the dielectric resonator of a terahertz laser. Telecommunications and Radio Engineering, 79(2), pp. 105—116. DOI: https://doi.org/10.1615/TelecomRadEng.v79.i2.3034. Guo, J., Zheng, S., Zhou, K., and Feng, G., 2021. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer. Appl. Phys. Lett., 119(2), 023504. DOI: https://doi.org/10.1063/5.0054755 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2024 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1442 |
| work_keys_str_mv |
AT degtyarevav freespacepropagationofterahertzlaservortexbeams AT dubininmm freespacepropagationofterahertzlaservortexbeams AT maslovva freespacepropagationofterahertzlaservortexbeams AT munteanki freespacepropagationofterahertzlaservortexbeams AT svistunovoo freespacepropagationofterahertzlaservortexbeams AT degtyarevav poširennâteragercovihvihrovihlazernihpučkívuvílʹnomuprostorí AT dubininmm poširennâteragercovihvihrovihlazernihpučkívuvílʹnomuprostorí AT maslovva poširennâteragercovihvihrovihlazernihpučkívuvílʹnomuprostorí AT munteanki poširennâteragercovihvihrovihlazernihpučkívuvílʹnomuprostorí AT svistunovoo poširennâteragercovihvihrovihlazernihpučkívuvílʹnomuprostorí |
| first_indexed |
2025-12-02T15:27:24Z |
| last_indexed |
2025-12-02T15:27:24Z |
| _version_ |
1851757479415775232 |
| spelling |
rpra-journalorgua-article-14422024-07-01T12:16:48Z FREE-SPACE PROPAGATION OF TERAHERTZ LASER VORTEX BEAMS ПОШИРЕННЯ ТЕРАГЕРЦОВИХ ВИХРОВИХ ЛАЗЕРНИХ ПУЧКІВ У ВІЛЬНОМУ ПРОСТОРІ Degtyarev, A. V. Dubinin, M. M. Maslov, V. A. Muntean, K. I. Svistunov, O. O. terahertz laser; waveguide resonator; spiral phase plate; vortex beams; polarization; radiation propagation терагерцовий лазер; хвилевідний резонатор; спіральна фазова пластинка; вихрові пучки; поляризація; поширення випромінювання Subject and Purpose. Currently, numerous ideas and different methods have been in growth for generating vortex beams — areas of the circular motion of the electromagnetic wave energy flow around the so-called phase singularity points caused by a violation of the wave front topological structure. The purpose of this work is to obtain analytical expressions describing the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser during the wave mode interaction with a spiral phase plate. The resulting vortex beams are examined for their physical features in free space propagation.Methods and Methodology. The Rayleigh-Sommerfeld vector theory is adopted to consider the propagation of vortex laser beams generated by wave modes of the quasi-optical waveguide cavity when interacting with a spiral phase plate in different diffraction zones.Results. For the first time, analytical expressions have been obtained to describe the nonparaxial diffraction of wave modes of the waveguide resonator of a terahertz laser, when resonator modes interact with a spiral phase plate at different topological charges, n. The physical features of the resulting vortex beams were studied in their free space propagation. It has been shown that a spiral phase plate modifies the structure of the linearly polarized EH₁₁ mode so that the original (n=0) intensity profile with the maximum energy at the center turns at n=1 and 2 into a ring-like donut shape with an energy hole in the center. The azimuthally polarized TE₀₁ mode has originally (n=0) a ring-shaped intensity. At n=1, this configuration changes to have the maximum intensity in the center. At n=2, it becomes annular again. In the process, the spherical phase front of the beam of the linearly polarized EH₁₁ mode becomes spiral and have one singularity point on the axis, whereas the phase structure of the azimuthally polarized TE₀₁ mode gains a region with two phase singularity points off the axis.Conclusions. The results of the study can effectively facilitate information transfer in high-speed THz communication systems. They can provide a real platform to perform tasks related to tomography, exploring properties of materials, detecting astrophysical sources, which makes them very promising in modern technologies.Keywords: terahertz laser; waveguide resonator; spiral phase plate; vortex beams; polarization; radiation propagationManuscript submitted 11.12.2023Radio phys. radio astron. 2024, 29(2): 127-136REFERENCES1. Headland, D., Monnai, Y., Abbott, D., Christophe, F., and Withawat, W., 2018. Tutorial: Terahertz beamforming, from concepts to realizations. APL. Photonics, 3(5), pp. 051101. DOI: https://doi.org/10.1063/1.50110632. Forbes, A., 2023. Advances in orbital angular momentum lasers. J. Light. Technol., 41(7), pp. 2079—2086. DOI: https://doi.org/10.1109/JLT.2022.32205093. Wang, H., Song, Q., Cai, Y., Lin, Q., Lu, X., Shangguan, H., Ai, Y., and Xu, Y., 2020. Recent advances in generation of terahertz vortex beams and their applications. Chin. Phys. B., 29(9), pp. 097404. DOI: https://doi.org/10.1088/1674-1056/aba2df4. Petrov, N.V., Sokolenko, B., Kulya, M.S., Gorodetsky, A., and Chernykh, A.V., 2022. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light: Adv. Manuf., 3(4), pp. 640—652. DOI: https://doi.org/10.37188/lam.2022.0435. Nagatsuma, T., Ducournau, G., and Renaud, C.C., 2016. Advances in terahertz communications accelerated by photonics. Nat. Photonics., 10(6), pp. 371—379. DOI: https://doi.org/10.1038/nphoton.2016.65 6. Chen, S., C., Feng, Z., Li, J., Tan, W., Du, L., H., Cai, J., and Zhu, L.G., 2020. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl., 9(1), 99. DOI: https://doi.org/10.1038/s41377-020-0338-47. Nobahar, D., Khorram, S., 2022. Terahertz vortex beam propagation through a magnetized plasma-ferrite structure. Opt. Laser Technol., 146, 107522. DOI: https://doi.org/10.1016/j.optlastec.2021.1075228. Hibberd, M.T., Healy, A.L., Lake, D.S., Georgiadis, V., Smith, E.J., Finlay, O.J., and Jamison, S.P, 2019. Acceleration of relativistic beams using laser generated terahertz pulses. Nat. Photonics, 14(12), pp. 755—759. DOI: https://doi.org/10.1038/s41566-020-0674-19. Klug, A., Nape, I., and Forbes, A., 2021. The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields. New J. Phys., 23(9), 093012. DOI: https://doi.org/10.1088/1367-2630/ac1fca10. Pinnock, S.W., Roh, S., Biesner, T., Pronin, A.V., and Dressel, M., 2022. Generation of THz vortex beams and interferometric determination of their topological charge. IEEETrans. Terahertz Sci. Technol., 13(1), pp. 44—49. DOI: https://doi.org/10.1109/TTHZ.2022.322136911. Rubano, A., Cardano, F., Piccirillo, B., and Marrucci, L., 2019. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B., 36(5), pp. D70—D87. DOI: https://doi.org/10.1364/JOSAB.36.000D7012. Imai, R., Kanda, N., Higuchi, T., Konishi, K., and Kuwata-Gonokami, M., 2014. Generation of broadband terahertz vortex beams. Opt. Lett., 39(13), pp. 3714—3717. DOI: https://doi.org/10.1364/OL.39.00371413. Yang, Y., Ye, X., Niu, L., Wang, K., Yang, Z., and Liu, J., 2020. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express, 28(2), pp. 1417—1425. DOI: https://doi.org/10.1364/OE.38007614. Zhang, K., Wang, Y., Burokur, S.N., and Wu, Q., 2022. Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings. IEEE Trans. Microw. Theory Techn., 70(1), pp. 200—209. DOI: https://doi.org/10.1109/TMTT.2021.307525115. Zhang, X.D., Su, Y.H., Ni, J.C., Wang, Z.Y., Wang, Y.L., Wang, C.W., and Chu, J.R., 2017. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating. Appl. Phys. Lett., 111(6), 061901. DOI: https://doi.org/10.1063/1.499759016. Ge, S.J., Shen, Z.X., Chen, P., Liang, X., Wang, X.K., Hu, W., and Lu, Y.Q., 2017. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors. Crystals, 7(10), 314. DOI: https://doi.org/10.3390/cryst710031417. Guan, S., Cheng, J., and Chang, S., 2022. Recent progress of terahertz spatial light modulators: materials, principles and applications. Micromachines, 13(10), 1637. DOI: https://doi.org/10.3390/mi1310163718. Al Dhaybi, A., Degert, J., Brasselet, E., Abraham, E., and Freysz, E.A., 2019. Terahertz vortex beam generation by infrared vector beam rectification. J. Opt. Soc. Am. B., 36(1), pp. 12—18. DOI: https://doi.org/10.1364/JOSAB.36.00001219. Miyamoto, K., Sano, K., Miyakawa, T., Niinomi, H., Toyoda, K., Vallés, A., and Omatsu, T., 2019. Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation. Opt. Express, 27(22), pp. 31840—31849. DOI: https://doi.org/10.1364/OE.27.03184020. Sobhani, H., and Dadar, E., 2019. Terahertz vortex generation methods in rippled and vortex plasmas. J. Opt. Soc. Am. A., 36(7), pp. 1187—1196. DOI: https://doi.org/10.1364/JOSAA.36.00118721. Chevalier, P., Amirzhan, A., Wang, F., Piccardo, M., Johnson, S.G., Capasso, F., and Everitt, H.O., 2019. Widely tunable compact terahertz gas laser. Science, 366(6467), pp. 856—860. DOI: https://doi.org/10.1126/science.aay868322. Farhoomand, J., and Pickett, H.M., 1987. Stable 1.25 watts CW far infrared laser radiation at the 119 μm methanol line. Int. J. Infrared Millim. Waves, 8(5), pp 41—447. DOI: https://doi.org/10.1007/BF0101325723. Marcatilі, E.A.J., and Schmeltzer, R.A., 1964, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J., 43(4), pp. 1783—1809. DOI: https://doi.org/10.1002/j.1538-7305.1964.tb04108.x24. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., and Woerdman, J.P., 1994. Helical-wavefront laser beams produced with a spiral phase plate. Opt. Commun., 112(5—6), pp. 321—327. DOI: https://doi.org/10.1016/0030-4018(94)90638-625. Kotlyar, V.V., and Kovalev, A.A., 2010. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. J. Opt. Soc. Am. A., 27(3), pp. 372—380. DOI: https://doi.org/10.1364/JOSAA.27.00037226. Gu, B., and Cui, Y., 2012. Nonparaxial and paraxial focusing of azimuthal-variant vector beams. Opt. Express, 20(16), pp. 17684— 17694. DOI: https://doi.org/10.1364/OE.20.01768427. Zhang, Y., Wang, L., and Zheng, C., 2005. Vector propagation of radially polarized Gaussian beams diffracted by an axicon. J. Opt. Soc. Am. A., 22(11), pp. 2542—2546. DOI: https://doi.org/10.1364/JOSAA.22.00254228. Lu, B., and Duan, K., 2003. Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture. Opt. Lett., 28(24), pp. 2440—2442. DOI: https://doi.org/10.1364/OL.28.00244029. Jia, X., Wang, Y., and Li, B., 2010. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture. Opt. Express, 18(7), pp. 7064—7075. DOI: https://doi.org/10.1364/OE.18.00706430. Cui, X., Wang, C., and Jia, X., 2019. Nonparaxial propagation of vector vortex beams diffracted by a circular aperture. J. Opt. Soc. Am. A, 36(1), pp. 115—123. DOI: https://doi.org/10.1364/JOSAA.36.00011531. Nye, J.F., and Berry, M.V., 1974. Dislocations in wave trains. Proc. R. Soc. London. Ser. A., 336(1605), pp. 165—190. DOI: https://doi.org/10.1098/rspa.1974.001232. Gurin, O.V., Degtyarev, A.V., Dubinin, N.N., Legenkiy, M.N., Maslov, V.A., Muntean, K.I., Ryabykh, V.N., and Senyuta, V.S., 2021. Formation of beams with nonuniform polarisation of radiation in a cw waveguide terahertz laser. Quantum Electron., 51(4), pp. 338—342. DOI: https://doi.org/10.1070/QEL1751133. Gurin, O.V., Degtyarev, А.V., Dubinin, M.M., Maslov, V.A., Muntean, K.I., Ryabykh, V.N., and Senyuta, V.S., 2020. Focusing of modes with an inhomogeneous spatial polarization of the dielectric resonator of a terahertz laser. Telecommunications and Radio Engineering, 79(2), pp. 105—116. DOI: https://doi.org/10.1615/TelecomRadEng.v79.i2.3034. Guo, J., Zheng, S., Zhou, K., and Feng, G., 2021. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer. Appl. Phys. Lett., 119(2), 023504. DOI: https://doi.org/10.1063/5.0054755 Предмет і мета роботи. На цей час набули поширення ідеї розробки методів формування вихрових пучків — областей кругового руху потоку енергії в електромагнітній хвилі навколо так званих точок фазових сингулярностей, обумовле- них порушенням топологічної структури хвильового фронту. Мета цієї роботи — отримання аналітичних виразів для опису непараксіальної дифракції мод діелектричного хвилевідного резонатора терагерцового лазера у процесі їх взаємодії зі спіральною фазовою пластинкою та вивчення фізичних особливостей отриманих вихрових пучків при їх поширенні у вільному просторі.Методи та методологія. Для вивчення поширення вихрових лазерних пучків, збуджуваних модами діелектричного хвилевідного квазіоптичного резонатора при їх взаємодії зі спіральною фазовою пластинкою в різних зонах дифракції, була застосована векторна теорія Релея–Зоммерфельда.Результати. Уперше отримано аналітичні вирази для опису непараксіальної дифракції мод діелектричного хвилевідного резонатора терагерцового лазера у процесі їх взаємодії зі спіральною фазовою пластинкою з довільним топологічним зарядом (n). Вивчені фізичні особливості отриманих вихрових пучків при їх поширенні у вільному просторі. Показано, що спіральна фазова пластина для лінійно поляризованої ЕH₁₁-моди з структури із максимумом інтенсивності в центрі (n=0) формує кільцеву (n=1, 2) структуру. Для азимутально поляризованої TE₀₁-моди кільцева (n=0) структура перетворюється на структуру із максимумом інтенсивності в центрі (n=1), а надалі знову в кільцеву (n=2). За таких умов фазовий фронт променя лінійно поляризованої ЕH₁₁-моди перетворюється зі сферичного в спіральний з однією точкою сингулярності на осі, тоді як для фазової структури азимутально поляризованої TE₀₁-моди з’являється область з двома точками фазової сингулярності поза віссю.Висновки. Результати дослідження можуть забезпечити ефективний метод передачі інформації у високошвидкісних системах ТГц-зв’язку та виконання завдань, пов’язаних з томографією, із дослідженням властивостей матеріалів, знаходженням астрофізичних джерел, що робить їх дуже перспективними в сучасних технологіях.Ключові слова: терагерцовий лазер; хвилевідний резонатор; спіральна фазова пластинка; вихрові пучки; поляризація; поширення випромінюванняСтаття надійшла до редакції 11.12.2023Radio phys. radio astron. 2024, 29(2): 127-136БІБЛІОГРАФІЧНИЙ СПИСОК 1. Headland D., Monnai Y., Abbott D., Christophe F., and Withawat W. Tutorial: Terahertz beamforming, from concepts to realizations. APL. Photonics. 2018. Vol. 3, Iss. 5. P. 051101. DOI: 10.1063/1.5011063 2. Forbes A. Advances in orbital angular momentum lasers. J. Light. Technol. 2023. Vol. 41, Iss. 7. P. 2079—2086. DOI: 10.1109/ JLT.2022.3220509. 3. Wang H., Song Q., Cai Y., Lin Q., Lu X., Shangguan H., Ai Y., and Xu Y. Recent advances in generation of terahertz vortex beams and their applications. Chin. Phys. B. 2020. Vol. 29, Iss. 9. P. 097404. DOI: 10.1088/1674-1056/aba2df 4. Petrov N.V., Sokolenko B., Kulya M.S., Gorodetsky A., and Chernykh A.V. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light: Adv. Manuf. 2022. Vol. 3, Iss. 4. P. 640—652. DOI: 10.37188/lam.2022.043 5. Nagatsuma T., Ducournau G., and Renaud C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics.2016. Vol. 10, Iss. 6. P. 371—379. DOI: 10.1038/nphoton.2016.65 6. Chen S.C., Feng, Z., Li J., Tan W., Du L.H., Cai J., and Zhu L.G. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 2020. Vol. 9, Iss. 1. P. 99. DOI: 10.1038/s41377-020-0338-4 7. Nobahar D., Khorram S. Terahertz vortex beam propagation through a magnetized plasma-ferrite structure. Opt. Laser Technol.2022. Vol. 146. P. 107522. DOI: 10.1016/j.optlastec.2021.107522 8. Hibberd M.T., Healy A.L., Lake D.S., Georgiadis V., Smith E.J., Finlay O. J., and Jamison S.P. Acceleration of relativistic beams using laser generated terahertz pulses. Nat. Photonics. 2019. Vol. 14, Iss. 12. P. 755—759. DOI: 10.1038/s41566-020-0674-1 9. Klug A., Nape I., and Forbes A. The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields. New J. Phys. 2021. Vol. 23, Iss. 9. P. 093012. DOI: 10.1088/1367-2630/ac1fca 10. Pinnock S.W., Roh S., Biesner T., Pronin A.V., and Dressel M. Generation of THz vortex beams and interferometric determination of their topological charge. IEEE Trans. Terahertz Sci. Technol. 2022. Vol. 13, Iss. 1. P. 44—49. DOI: 10.1109/TTHZ.2022.3221369 11. Rubano A., Cardano F., Piccirillo B., and Marrucci L. 2019. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B.2019. Vol. 36, Iss. 5. P. D70—D87. DOI: 10.1364/JOSAB.36.000D70 12. Imai R., Kanda N., Higuchi T., Konishi K., and Kuwata-Gonokami M. Generation of broadband terahertz vortex beams. Opt. Lett.2014. Vol. 39, Iss. 13. P. 3714—3717. DOI: 10.1364/OL.39.003714 13. Yang Y., Ye X., Niu L., Wang K., Yang Z., and Liu J. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express. 2020. Vol. 28, Iss. 2. P. 1417—1425. DOI: 10.1364/OE.380076 14. Zhang K., Wang Y., Burokur S.N., and Wu Q. Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings. IEEE Trans. Microw. Theory Techn. 2022. Vol. 70, Iss. 1. P. 200—209. DOI: 10.1109/ TMTT.2021.3075251 15. Zhang X.D., Su Y.H., Ni J.C., Wang Z.Y., Wang Y.L., Wang C.W., and Chu, J.R. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating. Appl. Phys. Lett. 2017. Vol. 111, Iss. 6. P. 061901. DOI: 10.1063/1.4997590 16. Ge S.J., Shen Z.X., Chen P., Liang X., Wang X.K., Hu W., and Lu Y.Q. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors. Crystals. 2017. Vol. 7, Iss. 10. 314. DOI: 10.3390/cryst7100314 17. Guan S., Cheng J., and Chang S. Recent progress of terahertz spatial light modulators: materials, principles and applications.Micromachines. 2022. Vol. 13, Iss. 10. 1637. DOI: 10.3390/mi13101637 18. Al Dhaybi A., Degert J., Brasselet E., Abraham E., and Freysz E.A. Terahertz vortex beam generation by infrared vector beam rectification. J. Opt. Soc. Am. B. 2019. Vol. 36, Iss. 1. P. 12—18. DOI: 10.1364/JOSAB.36.000012 19. Miyamoto K., Sano K., Miyakawa T., Niinomi H., Toyoda K., Vallés A., and Omatsu T. Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation. Opt. Express. 2019. Vol. 27, Iss. 22. P. 31840—31849. DOI: 10.1364/ OE.27.031840 20. Sobhani H., and Dadar E. Terahertz vortex generation methods in rippled and vortex plasmas. J. Opt. Soc. Am. A. 2019. Vol. 36, Iss. 7. P. 1187—1196. DOI: 10.1364/JOSAA.36.001187 21. Chevalier P., Amirzhan A., Wang F., Piccardo M., Johnson S.G., Capasso F., and Everitt H.O. Widely tunable compact terahertz gas laser. Science. 2019. Vol. 366, Iss. 6467. P. 856—860. DOI: 10.1126/science.aay8683 22. Farhoomand J., and Pickett H.M. Stable 1.25 watts CW far infrared laser radiation at the 119 μm methanol line. Int. J. Infrared Millim. Waves. 1987. Vol. 8, Iss. 5. P. 441—447. DOI: 10.1007/BF01013257 23. Marcatilі E.A.J., and Schmeltzer R.A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers.Bell Syst. Tech. J. 1964. Vol. 43, Iss. 4. P. 1783—1809. DOI: 10.1002/j.1538-7305.1964.tb04108.x 24. Beijersbergen M.W., Coerwinkel R.P.C., Kristensen M., and Woerdman J.P. Helical-wavefront laser beams produced with a spiral phase plate. Opt. Commun. 1994. Vol. 112, Iss. 5—6. P. 321—327. DOI: 10.1016/0030-4018(94)90638-6 25. Kotlyar V.V., and Kovalev A.A. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization, J. Opt. Soc. Am. A. 2010. Vol. 27, Iss. 3. P. 372—380. DOI: 10.1364/JOSAA.27.000372 26. Gu B., and Cui Y. Nonparaxial and paraxial focusing of azimuthal-variant vector beams. Opt. Express. 2012. Vol. 20, Iss. 16. P. 17684—17694. DOI: 10.1364/OE.20.017684 27. Zhang Y., Wang L., and Zheng C. Vector propagation of radially polarized Gaussian beams diffracted by an axicon. J. Opt. Soc. Am. A. 2005. Vol. 22, Iss. 11. P. 2542—2546. DOI: 10.1364/JOSAA.22.002542 28. Lu B., and Duan K., Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture. Opt. Lett. 2003. Vol. 28, Iss. 24. P. 2440—2442. DOI: 10.1364/OL.28.002440 29. Jia X., Wang Y., and Li B., Nonparaxial analyses of radially polarized beams diffracted at a circular aperture, Opt. Express. 2010. Vol. 18, Iss. 7. P. 7064—7075. DOI: 10.1364/OE.18.007064 30. Cui X., Wang C., and Jia X., Nonparaxial propagation of vector vortex beams diffracted by a circular aperture, J. Opt. Soc. Am. A. 2019. Vol. 36, Iss. 1. P. 115—123. DOI: 10.1364/JOSAA.36.000115 31. Nye J.F., and Berry M.V. Dislocations in wave trains. Proc. R. Soc. London. Ser. A. 1974. Vol. 336, Iss. 1605. P. 165—190. DOI: 10.1098/rspa.1974.0012 32. Gurin O.V., Degtyarev A.V., Dubinin N.N., Legenkiy M.N., Maslov V.A., Muntean K.I., Ryabykh V.N., and Senyuta V.S. Formation of beams with nonuniform polarisation of radiation in a cw waveguide terahertz laser. Quantum Electron. 2021. Vol. 51, Iss. 4. P. 338—342. DOI: 10.1070/QEL17511 33. Gurin O.V., Degtyarev А.V., Dubinin M.M., Maslov V.A., Muntean K.I., Ryabykh V.N., and Senyuta V.S. Focusing of modes with an inhomogeneous spatial polarization of the dielectric resonator of a terahertz laser. Telecommunications and Radio Engineering. 2020. Vol. 79, Iss. 2. P. 105—116. DOI: 10.1615/TelecomRadEng.v79.i2.30 34. Guo J., Zheng S., Zhou K., and Feng G. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer. Appl. Phys. Lett. 2021. Vol. 119, Iss. 2. 023504. DOI: 10.1063/5.0054755 Видавничий дім «Академперіодика» 2024-06-24 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1442 10.15407/rpra29.02.127 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 29, No 2 (2024); 127 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 29, No 2 (2024); 127 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 29, No 2 (2024); 127 2415-7007 1027-9636 10.15407/rpra29.02 uk http://rpra-journal.org.ua/index.php/ra/article/view/1442/pdf Copyright (c) 2024 RADIO PHYSICS AND RADIO ASTRONOMY |