PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION
Subject and Purpose. The work is aimed at analyzing changes in the concentration of atmospheric aerosols that were observed not only in the regions within a close vicinity of the eruption (particularly, in Australia), but in polar regions of the Earth as well.Methods and Methodology. To study the dy...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Видавничий дім «Академперіодика»
2025
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1459 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1459 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2025-03-23T08:40:53Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
Aerosols Volcano Tonga AOT Antarctica Arctic Australia AERONET |
| spellingShingle |
Aerosols Volcano Tonga AOT Antarctica Arctic Australia AERONET Soina, A. V. Yampolsky, Yu. M. PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| topic_facet |
Aerosols Volcano Tonga AOT Antarctica Arctic Australia AERONET аерозолі вулкан Тонга АОТ Антарктика Арктика Австралія AERONET |
| format |
Article |
| author |
Soina, A. V. Yampolsky, Yu. M. |
| author_facet |
Soina, A. V. Yampolsky, Yu. M. |
| author_sort |
Soina, A. V. |
| title |
PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| title_short |
PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| title_full |
PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| title_fullStr |
PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| title_full_unstemmed |
PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION |
| title_sort |
planetary-scale response of aerosols to the tonga volcano eruption |
| title_alt |
ПЛАНЕТАРНИЙ ВІДГУК АЕРОЗОЛІВ НА ВИВЕРЖЕННЯ ВУЛКАНА ТОНГА |
| description |
Subject and Purpose. The work is aimed at analyzing changes in the concentration of atmospheric aerosols that were observed not only in the regions within a close vicinity of the eruption (particularly, in Australia), but in polar regions of the Earth as well.Methods and Methodology. To study the dynamical variations of aerosol concentration that had resulted from the eruption of the Tonga volcano, we used data from the global aerosol monitoring network (AERONET) which relies on operation of the automatic, unified solar photometers Cimel CE318 of France. Three-year data sets (2021–2023) of aerosol optical thicknesses (AOT) were analyzed, measured about the spectral line of 440 nm (and, in one case, 443 nm). These data sets are hereinafter referred to as AOT440 or AOT443, respectively.Results. The emissions from the volcanic eruption reached the east coast of Australia on January 17, 2022, arriving to the west coast two days later. We have presented here time dependences of AOТ variations as recorded at two AERONET stations located on the emission track. The average air mass transfer rate has also been calculated. In addition, the paper shows variations in the level of aerosol concentration in the atmosphere of polar and tropical regions that occurred as a result of the Tonga volcano eruption. In addition, eruption transportation rates have been calculated for tropical regions around the globe.Conclusions. As was found, emissions from the Tonga volcano took only two days to reach the east coast of Australia, causing the AOT440 there to increase from 0.15 to 2. Over the two days that followed, the volcano's emissions moved, together with air masses, toward the west coast of the continent where the AOT443 increased from 0.15 to 1. Further on, the aerosols moved toward the AERONET Maido OPAR point over yet another day, and the AOT440 increased from 0.05 to 0.5. The variations in the level of aerosols in the polar regions’ air were also analyzed with the use of data of 2021 to 2023 observations at a few monitoring stations. It was found that the value of AOT440 for the Antarctic region increased in 2023 by a factor of 2 to 3 on the average. Meanwhile, the Arctic region reported a one and a half to two times increases in 2023. As has been established, the zonal transport of aerosols occurred at a very fast rate, while the meridional transport was slow, reaching its peak value for the polar regions over nearly a year.Keywords: Aerosols, Volcano Tonga, AOT, Antarctica, Arctic, Australia, AERONETManuscript submitted 10.09.2024Radio phys. radio astron. 2025, 30(1): 003-010REFERENCES1. The European Space Agency, 2024 [online]. Available from: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P2. Jinpeng, L., Sijia, L., Xin, H., Lian, X., Ke, D., Tengyu, L., Yue, M., Wuke, W., Aijun, D., 2023. Stratospheric Aerosol and Ozone Responses to the Hunga Tonga-Hunga Ha’apai volcanic Eruption. Geophys. Res. Lett., 50(4), e2022GL102315. DOI:https://doi.org/10.1029/2022GL1023153. Chornogor, L.F., 2023. Physical effects in the Earth—atmosphere—ionosphere—magnetosphere system caused by the powerful explosion of the Tonga volcano on January 15, 2022. Space Sci. Technol., 29(2(141)), pp. 54—77. DOI: https://doi.org/10.15407/knit2023.02.0544. Zhengpeng, L., Jianrong, B., Zhiyuan, H., Junyang, M., Bowen, L., 2023. Regional transportation and influence of atmospheric aerosols triggered by Tonga volcanic eruption. Environ. Pollut., 325, 121429. DOI: https://doi.org/10.1016/j.envpol.2023.1214295. Zhu, Y., Bardeen, C., Tilmes, S., Mills, M.J., Wang, X., Harvey, L., Taha, G., Kinnison, D.E., Yu, P., Rosenlof, K.H., Avery, M.A., Kloss, C., Li, C., Glanville, A.S., Millan, L., Deshler, T., Portmann, R.W., Krotkov, N.A., Toon, O.B., 2022. Hunga-Ton-ga eruption: stratospheric aerosol evolution in a water-rich plume. AGU Fall Meeting 2022, [preprint]. DOI: https://doi.org/10.21203/rs.3.rs-1647643/v16. Ke, G., Huizheng, Ch., Lin, T., Yaqiang, W., Chong, Sh., Wenrui, Y., Yuanxin, L., Lei, L., Yu, Zh., Lei, Zh., Zhaoliang, Z., Junting, Zh., Zhili, W., Xiaoye, Zh., 2022. Columnar optical, microphysical and radiative properties of the 2022 Hunga Tonga volcanic ash plumes. Sci. Bull., 67(19), pp. 2013—2021. DOI: https://doi.org/10.1016/j.scib.2022.08.0187. Boichu, M., Grandin, R., Blarel, L., Torres, B., Derimian, Y., Goloub, P., Chiapello, I., Dubovik, O., Mathurin, T., Pascal, N., Patou, M., Riedi, J., 2023. Growth and global persistence of stratospheric sulfate aerosols from the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Atmos., 128, e2023JD039010. DOI: https://doi.org/10.1029/2023JD0390108. Prata, F., 2023. Transport of the Hunga Tonga volcanic aerosols inferred from Himawari-8 limb measurements. EGU sphere, [preprint]. DOI: https://doi.org/10.5194/egusphere-2023-25519. Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET — A Federated Instrument Network and Data Archive for AerosolCharacterization. Remote Sens. Envilon, 66(1), pp. 1—16. DOI: https://doi.org/10.1016/S0034-4257(98)00031-510. AERONET (Aerosol RObotic NETwork). 2024 [online]. Available from: https://aeronet.gsfc.nasa.gov11. Dubovik, O., King, M.D., 2000. A fl exible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, pp. 20673—20696. DOI: https://doi.org/10.1029/2000JD90028212. Dubovik, O., Lapyonok, T., Kaufman, Y.J., Chin, M., Ginoux, P., Kahn, R.A., Sinyuk, A., 2008. Retrieving Global Aerosol Sources from Satellites Using Inverse Modeling. Atm. Chem. Phys., 8, pp. 209—250. DOI: https://doi.org/10.5194/acp-8-209-200813. Milinevsky, G., Danylevsky, V., Bovchaliuk, V., Bovchaliuk, A., Goloub, Ph., Dubovik, O., Kabashnikov, V., Chaikovsky, A., Miatselskaya, N., Mishchenko, M., Sosonkin, M., 2014. Aerosol seasonal variations over urban–industrial regions inUkraine according to AERONET and POLDER measurements. Atmos. Meas. Tech., 7, pp. 1459—1474. DOI: https://doi.org/10.5194/amt-7-1459-201414. Brogniez, C., Buchard, V., Auriol, F., 2008. Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements. Atmos. Chem. Phys., 8, pp. 4655—4663. DOI: https://doi.org/10.5194/acp-8-4655-200815. Li, J., Carlson, B.E., Dubovik, O., Lacis, A.A. 2014. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys., 14, pp. 12271—12289. DOI: https://doi.org/10.5194/acp-14-12271-201416. Earth Wind Map, 2024 [online]. Available from: https://earth.nullschool.net17. Chen, L., Ding, M., She, Y., Zhang, L., Zeng, Z., Jia, J., Zheng, Y., Tian, B., Zhu, K., Wang, X., Che, H., 2024. Regional Aerosol Optical Depth over Antarctica. Atmos. Res., 107534. DOI: https://doi.org/10.1016/j.atmosres.2024.10753418. Vallis, G.K., 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press. ISBN: 978-1107065500. DOI: https://doi.org/10.1017/9781107588417 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2025 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1459 |
| work_keys_str_mv |
AT soinaav planetaryscaleresponseofaerosolstothetongavolcanoeruption AT yampolskyyum planetaryscaleresponseofaerosolstothetongavolcanoeruption AT soinaav planetarnijvídgukaerozolívnaviveržennâvulkanatonga AT yampolskyyum planetarnijvídgukaerozolívnaviveržennâvulkanatonga |
| first_indexed |
2025-12-02T15:28:17Z |
| last_indexed |
2025-12-02T15:28:17Z |
| _version_ |
1850423626502766592 |
| spelling |
rpra-journalorgua-article-14592025-03-23T08:40:53Z PLANETARY-SCALE RESPONSE OF AEROSOLS TO THE TONGA VOLCANO ERUPTION ПЛАНЕТАРНИЙ ВІДГУК АЕРОЗОЛІВ НА ВИВЕРЖЕННЯ ВУЛКАНА ТОНГА Soina, A. V. Yampolsky, Yu. M. Aerosols; Volcano Tonga; AOT; Antarctica Arctic; Australia; AERONET аерозолі; вулкан Тонга; АОТ; Антарктика; Арктика; Австралія; AERONET Subject and Purpose. The work is aimed at analyzing changes in the concentration of atmospheric aerosols that were observed not only in the regions within a close vicinity of the eruption (particularly, in Australia), but in polar regions of the Earth as well.Methods and Methodology. To study the dynamical variations of aerosol concentration that had resulted from the eruption of the Tonga volcano, we used data from the global aerosol monitoring network (AERONET) which relies on operation of the automatic, unified solar photometers Cimel CE318 of France. Three-year data sets (2021–2023) of aerosol optical thicknesses (AOT) were analyzed, measured about the spectral line of 440 nm (and, in one case, 443 nm). These data sets are hereinafter referred to as AOT440 or AOT443, respectively.Results. The emissions from the volcanic eruption reached the east coast of Australia on January 17, 2022, arriving to the west coast two days later. We have presented here time dependences of AOТ variations as recorded at two AERONET stations located on the emission track. The average air mass transfer rate has also been calculated. In addition, the paper shows variations in the level of aerosol concentration in the atmosphere of polar and tropical regions that occurred as a result of the Tonga volcano eruption. In addition, eruption transportation rates have been calculated for tropical regions around the globe.Conclusions. As was found, emissions from the Tonga volcano took only two days to reach the east coast of Australia, causing the AOT440 there to increase from 0.15 to 2. Over the two days that followed, the volcano's emissions moved, together with air masses, toward the west coast of the continent where the AOT443 increased from 0.15 to 1. Further on, the aerosols moved toward the AERONET Maido OPAR point over yet another day, and the AOT440 increased from 0.05 to 0.5. The variations in the level of aerosols in the polar regions’ air were also analyzed with the use of data of 2021 to 2023 observations at a few monitoring stations. It was found that the value of AOT440 for the Antarctic region increased in 2023 by a factor of 2 to 3 on the average. Meanwhile, the Arctic region reported a one and a half to two times increases in 2023. As has been established, the zonal transport of aerosols occurred at a very fast rate, while the meridional transport was slow, reaching its peak value for the polar regions over nearly a year.Keywords: Aerosols, Volcano Tonga, AOT, Antarctica, Arctic, Australia, AERONETManuscript submitted 10.09.2024Radio phys. radio astron. 2025, 30(1): 003-010REFERENCES1. The European Space Agency, 2024 [online]. Available from: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P2. Jinpeng, L., Sijia, L., Xin, H., Lian, X., Ke, D., Tengyu, L., Yue, M., Wuke, W., Aijun, D., 2023. Stratospheric Aerosol and Ozone Responses to the Hunga Tonga-Hunga Ha’apai volcanic Eruption. Geophys. Res. Lett., 50(4), e2022GL102315. DOI:https://doi.org/10.1029/2022GL1023153. Chornogor, L.F., 2023. Physical effects in the Earth—atmosphere—ionosphere—magnetosphere system caused by the powerful explosion of the Tonga volcano on January 15, 2022. Space Sci. Technol., 29(2(141)), pp. 54—77. DOI: https://doi.org/10.15407/knit2023.02.0544. Zhengpeng, L., Jianrong, B., Zhiyuan, H., Junyang, M., Bowen, L., 2023. Regional transportation and influence of atmospheric aerosols triggered by Tonga volcanic eruption. Environ. Pollut., 325, 121429. DOI: https://doi.org/10.1016/j.envpol.2023.1214295. Zhu, Y., Bardeen, C., Tilmes, S., Mills, M.J., Wang, X., Harvey, L., Taha, G., Kinnison, D.E., Yu, P., Rosenlof, K.H., Avery, M.A., Kloss, C., Li, C., Glanville, A.S., Millan, L., Deshler, T., Portmann, R.W., Krotkov, N.A., Toon, O.B., 2022. Hunga-Ton-ga eruption: stratospheric aerosol evolution in a water-rich plume. AGU Fall Meeting 2022, [preprint]. DOI: https://doi.org/10.21203/rs.3.rs-1647643/v16. Ke, G., Huizheng, Ch., Lin, T., Yaqiang, W., Chong, Sh., Wenrui, Y., Yuanxin, L., Lei, L., Yu, Zh., Lei, Zh., Zhaoliang, Z., Junting, Zh., Zhili, W., Xiaoye, Zh., 2022. Columnar optical, microphysical and radiative properties of the 2022 Hunga Tonga volcanic ash plumes. Sci. Bull., 67(19), pp. 2013—2021. DOI: https://doi.org/10.1016/j.scib.2022.08.0187. Boichu, M., Grandin, R., Blarel, L., Torres, B., Derimian, Y., Goloub, P., Chiapello, I., Dubovik, O., Mathurin, T., Pascal, N., Patou, M., Riedi, J., 2023. Growth and global persistence of stratospheric sulfate aerosols from the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Atmos., 128, e2023JD039010. DOI: https://doi.org/10.1029/2023JD0390108. Prata, F., 2023. Transport of the Hunga Tonga volcanic aerosols inferred from Himawari-8 limb measurements. EGU sphere, [preprint]. DOI: https://doi.org/10.5194/egusphere-2023-25519. Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET — A Federated Instrument Network and Data Archive for AerosolCharacterization. Remote Sens. Envilon, 66(1), pp. 1—16. DOI: https://doi.org/10.1016/S0034-4257(98)00031-510. AERONET (Aerosol RObotic NETwork). 2024 [online]. Available from: https://aeronet.gsfc.nasa.gov11. Dubovik, O., King, M.D., 2000. A fl exible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, pp. 20673—20696. DOI: https://doi.org/10.1029/2000JD90028212. Dubovik, O., Lapyonok, T., Kaufman, Y.J., Chin, M., Ginoux, P., Kahn, R.A., Sinyuk, A., 2008. Retrieving Global Aerosol Sources from Satellites Using Inverse Modeling. Atm. Chem. Phys., 8, pp. 209—250. DOI: https://doi.org/10.5194/acp-8-209-200813. Milinevsky, G., Danylevsky, V., Bovchaliuk, V., Bovchaliuk, A., Goloub, Ph., Dubovik, O., Kabashnikov, V., Chaikovsky, A., Miatselskaya, N., Mishchenko, M., Sosonkin, M., 2014. Aerosol seasonal variations over urban–industrial regions inUkraine according to AERONET and POLDER measurements. Atmos. Meas. Tech., 7, pp. 1459—1474. DOI: https://doi.org/10.5194/amt-7-1459-201414. Brogniez, C., Buchard, V., Auriol, F., 2008. Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements. Atmos. Chem. Phys., 8, pp. 4655—4663. DOI: https://doi.org/10.5194/acp-8-4655-200815. Li, J., Carlson, B.E., Dubovik, O., Lacis, A.A. 2014. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys., 14, pp. 12271—12289. DOI: https://doi.org/10.5194/acp-14-12271-201416. Earth Wind Map, 2024 [online]. Available from: https://earth.nullschool.net17. Chen, L., Ding, M., She, Y., Zhang, L., Zeng, Z., Jia, J., Zheng, Y., Tian, B., Zhu, K., Wang, X., Che, H., 2024. Regional Aerosol Optical Depth over Antarctica. Atmos. Res., 107534. DOI: https://doi.org/10.1016/j.atmosres.2024.10753418. Vallis, G.K., 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press. ISBN: 978-1107065500. DOI: https://doi.org/10.1017/9781107588417 Предмет і мета роботи. Метою роботи є аналіз змін концентрації атмосферних аерозолів не лише у близьких до виверження регіонах, до яких відноситься здебільшого Австралія, але й у полярних районах Землі.Методи та методологія. Для дослідження динаміки концентрації аерозолів, зумовленої виверженням вулкана Тонга, використано дані всесвітньої мережі моніторингу аерозолів AERONET, діяльність якої ґрунтується на роботі автоматичних уніфікованих сонячних фотометрів Cimel CE318 (Франція). Проаналізовано трирічні масиви даних вимірювань аерозольної оптичної товщі (АОТ) у спектральному каналі — 440 нм (в одному випадку — 443 нм), (надалі АОТ440 або АОТ443) у 2021—2023 рр. Використовувались дані моніторингу аерозолів двох полярних регіонів, тропіківта Австралії.Результати. Викиди, що утворились від виверження вулкана, досягли східного берега Австралії 17 січня 2022 року, а ще через два дні дісталися західного берега. Було побудовано залежності зміни АОТ від часу для двох станцій AERONET, що знаходяться на шляху викидів. Також було розраховано середню швидкість перенесення повітряних мас. Окрім цього в роботі показано зміну рівня концентрації аерозолів в атмосфері полярних і тропічного регіонів, що стала наслідком виверження вулкана Тонга. Додатково розраховано швидкості перенесення викидів у тропіках, навколо земної кулі.Висновки. Визначено, що лише за дві доби викиди від вулкана Тонга дісталися східного берега Австралії, тоді значення АОТ440 з 0.15 зросло до 2. Ще дві доби викиди вулкана рухались з повітряними масами до західного узбережжя материка — тут значення АОТ443 збільшилось з 0.15 до 1. Далі до пункту AERONET Maido OPAR аерозолі прямували ще добу, а значення АОТ440 збільшилось з 0.05 до 0.5. Дослідження зміни рівня аерозолів у повітрі полярних регіонів виконувались за допомогою аналізу даних деяких станцій моніторингу за 2021—2023 рр. Було виявлено, що в Антарктиці значення АОТ440 збільшилося у 2023 р. в середньому у 2–3 рази, тоді як в Арктиці збільшення приблизно в півтора-два рази також спостерігається у 2023 р. Визначено, що зональне перенесення аерозолів відбувалося дуже швидко, в той час як меридіональне перенесення відбувалося повільно й досягло свого піку в полярних регіонах приблизно через рік.Ключові слова: аерозолі, вулкан Тонга, АОТ, Антарктика, Арктика, Австралія, AERONETСтаття надійшла до редакції 10.09.2024Radio phys. radio astron. 2025, 30(1): 003-010БІБЛІОГРАФІЧНИЙ СПИСОК1. The European Space Agency, 2024. URL: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P2. Jinpeng Lu, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Tengyu Liu, Yue Ma, Wuke Wang, Aijun Ding. Stratospheric Aerosol and Ozone Responses to the Hunga Tonga-Hunga Ha’apai volcanic Eruption. Geophys. Res. Lett. 2023. Vol. 50, Iss. 4.e2022GL102315. DOI: 10.1029/2022GL1023153. Чорногор Л.Ф. Фізичні ефекти у системі Земля—атмосфера—іоносфера—магнітосфера, викликані потужним вибухом вулкана Тонга 15 січня 2022 р. Космічна наука і технологія. 2023. Т. 29, No 2(141). С. 54—77. DOI: 10.15407/knit2023.02.0544. Zhengpeng Li, Jianrong Bi, Zhiyuan Hu, Junyang Ma, Bowen Li. Regional transportation and influence of atmospheric aerosols triggered by Tonga volcanic eruption. Environ. Pollut. 2023. Vol. 325. 121429. DOI: 10.1016/j.envpol.2023.1214295. Zhu Y., Bardeen C., Tilmes S., Mills M.J., Wang X., Harvey L., Taha G., Kinnison D.E., Yu P., Rosenlof K.H., Avery M.A., Kloss C., Li C., Glanville A.S., Millan L., Deshler T., Portmann R.W., Krotkov N.A., Toon O.B. Hunga-Tonga eruption:stratospheric aerosol evolution in a water-rich plume. AGU Fall Meeting 2022 [preprint]. DOI: 10.21203/rs.3.rs-1647643/v16. Ke G., Huizheng Ch., Lin T., Yaqiang W., Chong Sh., Wenrui Y., Yuanxin L., Lei L., Yu Zh., Lei Zh., Zhaoliang Z., Junting Zh., Zhili W., Xiaoye Zh. Columnar optical, microphysical and radiative properties of the 2022 Hunga Tonga volcanicash plumes. Sci. Bull. 2022. Vol. 67, Iss. 19. P. 2013—2021. DOI: 10.1016/j.scib.2022.08.0187. Boichu M., Grandin R., Blarel L., Torres B., Derimian Y., Goloub P., Chiapello I., Dubovik O., Mathurin T., Pascal N., Patou M., Riedi J. Growth and global persistence of stratospheric sulfate aerosols from the 2022 Hunga Tonga–HungaHa’apai volcanic eruption. J. Geophys. Res. Atmos. 2023. Vol. 128. e2023JD039010. DOI: 10.1029/2023JD0390108. Prata F. Transport of the Hunga Tonga volcanic aerosols inferred from Himawari-8 limb measurements. EGU sphere [preprint]. 2023. DOI: 10.5194/egusphere-2023-25519. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET — A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Envilon. 1998. Vol. 66, Iss. 1. P. 1—16. DOI: 10.1016/S0034-4257(98)00031-510. AERONET (Aerosol RObotic NETwork). 2024. URL: https://aeronet.gsfc.nasa.gov11. Dubovik O., King M. D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000. Vol. 105. P. 20673—20696. DOI: 10.1029/2000JD90028212. Dubovik O., Lapyonok T., Kaufman Y.J., Chin M., Ginoux P., Kahn R.A., Sinyuk A. Retrieving Global Aerosol Sources from Satellites Using Inverse Modeling. Atm. Chem. Phys. 2008. Vol. 8. P. 209—250. DOI: 10.5194/acp-8-209-2008.13. Milinevsky G., Danylevsky V., Bovchaliuk V., Bovchaliuk A., Goloub Ph., Dubovik O., Kabashnikov V., Chaikovsky A., Miatselskaya N., Mishchenko M., Sosonkin M. Aerosol seasonal variations over urban–industrial regions in Ukraine according to AERONET and POLDER measurements. Atmos. Meas. Tech. 2014. Vol. 7, Р. 1459—1474. DOI: 10.5194/amt-7-1459-201414. Brogniez C., Buchard V., Auriol F. Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements. Atmos. Chem. Phys. 2008. Vol. 8. P. 4655—4663. DOI: 10.5194/acp-8-4655-200815. Li J., Carlson B.E., Dubovik O., Lacis A.A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys., 2014. Vol. 14. P. 12271—12289. DOI: 10.5194/acp-14-12271-201416. Earth Wind Map, 2024. URL: https://earth.nullschool.net17. Chen L., Ding M., She Y., Zhang L., Zeng Z., Jia J., Zheng Y., Tian B., Zhu K., Wang X., Yao Z., Che H. Regional Aerosol Optical Depth over Antarctica. Atmos. Res. 2024. Vol. 308. 107534. DOI: 10.1016/j.atmosres.2024.10753418. Vallis G.K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press. 2017. 964 p. ISBN: 978-1107065500. DOI: 10.1017/9781107588417 Видавничий дім «Академперіодика» 2025-03-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1459 10.15407/rpra30.01.003 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 1 (2025); 3 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 1 (2025); 3 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 1 (2025); 3 2415-7007 1027-9636 10.15407/rpra30.01 uk http://rpra-journal.org.ua/index.php/ra/article/view/1459/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY |