AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadban...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2025
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1460 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1460 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2025-03-23T08:36:12Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
communication system interference-immune communication DSSS technology Gold codes multi-channel correlator SDR receiver digital stream |
| spellingShingle |
communication system interference-immune communication DSSS technology Gold codes multi-channel correlator SDR receiver digital stream Varavin, A. V. Yermak, H. P. Kudryavtsev, D. P. Vasiliev, O. S. Balaban, M. V. Melnyk, S. S. Zheltov, V. M. Fateev, O. V. AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| topic_facet |
communication system interference-immune communication DSSS technology Gold codes multi-channel correlator SDR receiver digital stream система зв'язку завадозахищений зв'язок технологія DSSS коди Голда багатоканальний корелометр SDR-приймач цифровий потік |
| format |
Article |
| author |
Varavin, A. V. Yermak, H. P. Kudryavtsev, D. P. Vasiliev, O. S. Balaban, M. V. Melnyk, S. S. Zheltov, V. M. Fateev, O. V. |
| author_facet |
Varavin, A. V. Yermak, H. P. Kudryavtsev, D. P. Vasiliev, O. S. Balaban, M. V. Melnyk, S. S. Zheltov, V. M. Fateev, O. V. |
| author_sort |
Varavin, A. V. |
| title |
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| title_short |
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| title_full |
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| title_fullStr |
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| title_full_unstemmed |
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM |
| title_sort |
interference-immune communication system for digital data transmission based on a multi-channel correlator part 1. development of a signal formation and decoding algorithm for the sub-noise communication system |
| title_alt |
ЗАВАДОЗАХИЩЕНА СИСТЕМА ЗВ’ЯЗКУ ДЛЯ ПЕРЕДАЧІ ЦИФРОВИХ ДАНИХ НА БАЗІ БАГАТОКАНАЛЬНОГО КОРЕЛОМЕТРА. Частина 1. РОЗРОБКА АЛГОРИТМУ ФОРМУВАННЯ ТА ДЕКОДУВАННЯ СИГНАЛУ СИСТЕМИ ПІДШУМОВОГО ЗВ’ЯЗКУ |
| description |
Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadband pseudorandom signals formed by the Direct Sequence Spread Spectrum (DSSS) technology are mathematically modeled. Basic software solutions are experimentally developed for data receiving, transforming, processing, and displaying. The functional capabilities of the hardware and software tools are evaluated and analyzed for their subsequent integration into the system. Results. An algorithm has been developed for generating and decoding from a sub-noise spread spectrum correlation communication system using DSSS technology. The processes of data formation and transmission by noise-like signals based on the Gold codes have been modeled. An algorithm for noise-like signal identification has been developed, based on the mathematical determination of the autocorrelation function which evaluates the relationship (degree of similarity) between the signal and its time-shifted copy. To maintain the phase coherence between the expected (received from air) and reference (key) signals at any time, a cyclically operating multi-channel correlator was developed. We estimated the maximum radio data rates over the radio channels when transmitting low-frequency telemetry signals, control signals, and video signals.Conclusions. The research and development of digital communication channels using signal coding through the Direct Sequence Spread Spectrum (DSSS) method along with Gold codes have demonstrated the potential to create compact devices for establishing interference-immune and low-noise multi-channel communication which is particularly suitable for data transmission in modern environments.Keywords: communication system, interference-immune communication, DSSS technology, Gold codes, multi-channel correlator, SDR receiver, digital streamManuscript submitted 25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022REFERENCES1. Kamilo, F., 1995. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited.2. Gold, R., 1967. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory, 13(4), pp. 619—621. DOI: https://doi.org/10.1109/TIT.1967.10540483. Ipatov, V.P., 2004. Spread Spectrum and CDMA. Principles and Applications. Wiley. DOI: https://doi.org/10.1002/04700918004. Simon, M., Omura, J.K., Scholtz, R.A., Levitt, B.K., 1994. Spread Spectrum Communications Handbook. NY McGraw-Hill.5. Proakis, J.G., Salehi, M., 2008. Digital Communications. 5th ed. McGraw-Hill, New York.6. Dillinger, M., Madani, K., Alonistioti, N., 2003. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons.7. Rami, A., Dezfouli, B., 2018. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun., 128, Sept., pp. 106—125. DOI: https://doi.org/10.1016/j.comcom.2018.07.0128. Perepelitsyn, A., Shulga, D., 2012. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. In: Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012, pp. 43—440.9. Kulanov, V., Kharchenko, V., Perepelitsyn, A., 2009. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. In: Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009, pp. 322—325.10. Mazurkov, M., Sokolov, A., 2015. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation, 5(3), pp. 203—209.11. Avdeyenko, G., 2020. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. In: 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020, pp. 177—181. DOI: https://doi.org/10.1109/PICST51311.2020.9467904 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2025 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1460 |
| work_keys_str_mv |
AT varavinav aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT yermakhp aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT kudryavtsevdp aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT vasilievos aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT balabanmv aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT melnykss aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT zheltovvm aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT fateevov aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT varavinav zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT yermakhp zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT kudryavtsevdp zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT vasilievos zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT balabanmv zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT melnykss zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT zheltovvm zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT fateevov zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku AT varavinav interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT yermakhp interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT kudryavtsevdp interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT vasilievos interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT balabanmv interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT melnykss interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT zheltovvm interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem AT fateevov interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem |
| first_indexed |
2025-12-02T15:28:19Z |
| last_indexed |
2025-12-02T15:28:19Z |
| _version_ |
1851757483495784448 |
| spelling |
rpra-journalorgua-article-14602025-03-23T08:36:12Z AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM ЗАВАДОЗАХИЩЕНА СИСТЕМА ЗВ’ЯЗКУ ДЛЯ ПЕРЕДАЧІ ЦИФРОВИХ ДАНИХ НА БАЗІ БАГАТОКАНАЛЬНОГО КОРЕЛОМЕТРА. Частина 1. РОЗРОБКА АЛГОРИТМУ ФОРМУВАННЯ ТА ДЕКОДУВАННЯ СИГНАЛУ СИСТЕМИ ПІДШУМОВОГО ЗВ’ЯЗКУ Varavin, A. V. Yermak, H. P. Kudryavtsev, D. P. Vasiliev, O. S. Balaban, M. V. Melnyk, S. S. Zheltov, V. M. Fateev, O. V. communication system; interference-immune communication; DSSS technology; Gold codes; multi-channel correlator; SDR receiver; digital stream система зв'язку; завадозахищений зв'язок; технологія DSSS; коди Голда; багатоканальний корелометр; SDR-приймач; цифровий потік Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadband pseudorandom signals formed by the Direct Sequence Spread Spectrum (DSSS) technology are mathematically modeled. Basic software solutions are experimentally developed for data receiving, transforming, processing, and displaying. The functional capabilities of the hardware and software tools are evaluated and analyzed for their subsequent integration into the system. Results. An algorithm has been developed for generating and decoding from a sub-noise spread spectrum correlation communication system using DSSS technology. The processes of data formation and transmission by noise-like signals based on the Gold codes have been modeled. An algorithm for noise-like signal identification has been developed, based on the mathematical determination of the autocorrelation function which evaluates the relationship (degree of similarity) between the signal and its time-shifted copy. To maintain the phase coherence between the expected (received from air) and reference (key) signals at any time, a cyclically operating multi-channel correlator was developed. We estimated the maximum radio data rates over the radio channels when transmitting low-frequency telemetry signals, control signals, and video signals.Conclusions. The research and development of digital communication channels using signal coding through the Direct Sequence Spread Spectrum (DSSS) method along with Gold codes have demonstrated the potential to create compact devices for establishing interference-immune and low-noise multi-channel communication which is particularly suitable for data transmission in modern environments.Keywords: communication system, interference-immune communication, DSSS technology, Gold codes, multi-channel correlator, SDR receiver, digital streamManuscript submitted 25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022REFERENCES1. Kamilo, F., 1995. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited.2. Gold, R., 1967. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory, 13(4), pp. 619—621. DOI: https://doi.org/10.1109/TIT.1967.10540483. Ipatov, V.P., 2004. Spread Spectrum and CDMA. Principles and Applications. Wiley. DOI: https://doi.org/10.1002/04700918004. Simon, M., Omura, J.K., Scholtz, R.A., Levitt, B.K., 1994. Spread Spectrum Communications Handbook. NY McGraw-Hill.5. Proakis, J.G., Salehi, M., 2008. Digital Communications. 5th ed. McGraw-Hill, New York.6. Dillinger, M., Madani, K., Alonistioti, N., 2003. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons.7. Rami, A., Dezfouli, B., 2018. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun., 128, Sept., pp. 106—125. DOI: https://doi.org/10.1016/j.comcom.2018.07.0128. Perepelitsyn, A., Shulga, D., 2012. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. In: Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012, pp. 43—440.9. Kulanov, V., Kharchenko, V., Perepelitsyn, A., 2009. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. In: Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009, pp. 322—325.10. Mazurkov, M., Sokolov, A., 2015. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation, 5(3), pp. 203—209.11. Avdeyenko, G., 2020. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. In: 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020, pp. 177—181. DOI: https://doi.org/10.1109/PICST51311.2020.9467904 Предмет і мета роботи. Метою роботи є розробка й дослідження завадозахищеної системи радіозв’язку для передачі та приймання цифрової інформації і відеозображень із використанням программно-обумовленої радіосистеми.Методи та методологія. У роботі проведено математичне моделювання процесів формування, випромінювання, приймання та декодування широкосмугових псевдовипадкових сигналів, формованих за технологією direct sequence spread spectrum (DSSS), — розширення спектра методом прямої послідовності, експериментальне відпрацювання основних програмних рішень із приймання, перетворення, обробки та відображення даних, оцінка й аналіз функціональних можливостей програмно-апаратних засобів для їхнього наступного синтезу в систему.Результати. Розроблено алгоритм формування та декодування сигналу системи підшумового зв’язку з розширеним спектром із використанням технології DSSS. Проведено моделювання процесу формування та передачі даних псевдошумовими сигналами на основі кодів Голда. Розроблено алгоритм ідентифікації шумоподібних сигналів, заснований на можливості математичного визначення функції автокореляції, яка визначає взаємозв’язок (ступінь подібності) між сигналом і його зрушеною в часі копією. Для забезпечення когерентності фази між очікуваним (прийнятим з ефіру) та опорними (ключем) сигналами в довільний момент часу було розроблено циклічно працюючий багатоканальний корелометр. Проведено оцінку максимальної швидкодії радіоканалів під час передачі сигналів.Висновки. Розробка та дослідження цифрових каналів зв’язку з використанням кодування сигналу за методом розширення спектра прямою послідовністю та використання кодів Голда дозволяє розробляти малогабаритні пристрої для організації завадозахищеного підшумового багатоканального зв’язку для передачі даних у сучасних умовах.Ключові слова: система зв'язку, завадозахищений зв'язок, технологія DSSS, коди Голда, багатоканальний корелометр, SDR-приймач, цифровий потікСтаття надійшла до редакції 25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022БІБЛІОГРАФІЧНИЙ СПИСОК1. Kamilo F. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited: 1995. 522 p.2. Gold R. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory. 1967. Vol. 13, Iss. 4. P. 619—621. DOI: 10.1109/TIT.1967.10540483. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications. Wiley: 2004. 396 p.4. Simon M., Omura J.K., Scholtz R.A., Levitt B.K. Spread Spectrum Communications Handbook. NY McGraw-Hill: 1994. 1248 p.5. Proakis J.G., Salehi M. Digital Communications. 5th ed. McGraw-Hill, New York: 2008. 1150 p.6. Dillinger M., Madani K., Alonistioti N. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons: 2003. 454 p.7. Rami A., Dezfouli B. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun. Vol. 128, Sept. 2018. P. 106—125. DOI: 10.1016/j.comcom.2018.07.0128. Perepelitsyn A., Shulga D. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012. P. 43—440.9. Kulanov V., Kharchenko V., Perepelitsyn A. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009. P. 322—325.10. Mazurkov M., Sokolov A. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation. 2015. Vol. 5, Iss. 3. P. 203—209.11. Avdeyenko G. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020. P. 177—181. Видавничий дім «Академперіодика» 2025-03-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1460 10.15407/rpra30.01.011 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 1 (2025); 11 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 1 (2025); 11 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 1 (2025); 11 2415-7007 1027-9636 10.15407/rpra30.01 uk http://rpra-journal.org.ua/index.php/ra/article/view/1460/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY |