AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM

Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadban...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Varavin, A. V., Yermak, H. P., Kudryavtsev, D. P., Vasiliev, O. S., Balaban, M. V., Melnyk, S. S., Zheltov, V. M., Fateev, O. V.
Format: Article
Language:Ukrainian
Published: Видавничий дім «Академперіодика» 2025
Subjects:
Online Access:http://rpra-journal.org.ua/index.php/ra/article/view/1460
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Radio physics and radio astronomy

Institution

Radio physics and radio astronomy
id rpra-journalorgua-article-1460
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-03-23T08:36:12Z
collection OJS
language Ukrainian
topic communication system
interference-immune communication
DSSS technology
Gold codes
multi-channel correlator
SDR receiver
digital stream
spellingShingle communication system
interference-immune communication
DSSS technology
Gold codes
multi-channel correlator
SDR receiver
digital stream
Varavin, A. V.
Yermak, H. P.
Kudryavtsev, D. P.
Vasiliev, O. S.
Balaban, M. V.
Melnyk, S. S.
Zheltov, V. M.
Fateev, O. V.
AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
topic_facet communication system
interference-immune communication
DSSS technology
Gold codes
multi-channel correlator
SDR receiver
digital stream
система зв'язку
завадозахищений зв'язок
технологія DSSS
коди Голда
багатоканальний корелометр
SDR-приймач
цифровий потік
format Article
author Varavin, A. V.
Yermak, H. P.
Kudryavtsev, D. P.
Vasiliev, O. S.
Balaban, M. V.
Melnyk, S. S.
Zheltov, V. M.
Fateev, O. V.
author_facet Varavin, A. V.
Yermak, H. P.
Kudryavtsev, D. P.
Vasiliev, O. S.
Balaban, M. V.
Melnyk, S. S.
Zheltov, V. M.
Fateev, O. V.
author_sort Varavin, A. V.
title AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
title_short AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
title_full AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
title_fullStr AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
title_full_unstemmed AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM
title_sort interference-immune communication system for digital data transmission based on a multi-channel correlator part 1. development of a signal formation and decoding algorithm for the sub-noise communication system
title_alt ЗАВАДОЗАХИЩЕНА СИСТЕМА ЗВ’ЯЗКУ ДЛЯ ПЕРЕДАЧІ ЦИФРОВИХ ДАНИХ НА БАЗІ БАГАТОКАНАЛЬНОГО КОРЕЛОМЕТРА. Частина 1. РОЗРОБКА АЛГОРИТМУ ФОРМУВАННЯ ТА ДЕКОДУВАННЯ СИГНАЛУ СИСТЕМИ ПІДШУМОВОГО ЗВ’ЯЗКУ
description Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadband pseudorandom signals formed by the Direct Sequence Spread Spectrum (DSSS) technology are mathematically modeled. Basic software solutions are experimentally developed for data receiving, transforming, processing, and displaying. The functional capabilities of the hardware and software tools are evaluated and analyzed for their subsequent integration into the system. Results. An algorithm has been developed for generating and decoding from a sub-noise spread spectrum correlation communication system using DSSS technology. The processes of data formation and transmission by noise-like signals based on the Gold codes have been modeled. An algorithm for noise-like signal identification has been developed, based on the mathematical determination of the autocorrelation function which evaluates the relationship (degree of similarity) between the signal and its time-shifted copy. To maintain the phase coherence between the expected (received from air) and reference (key) signals at any time, a cyclically operating multi-channel correlator was developed. We estimated the maximum radio data rates over the radio channels when transmitting low-frequency telemetry signals, control signals, and video signals.Conclusions. The research and development of digital communication channels using signal coding through the Direct Sequence Spread Spectrum (DSSS) method along with Gold codes have demonstrated the potential to create compact devices for establishing interference-immune and low-noise multi-channel communication which is particularly suitable for data transmission in modern environments.Keywords: communication system, interference-immune communication, DSSS technology, Gold codes, multi-channel correlator, SDR receiver, digital streamManuscript submitted  25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022REFERENCES1. Kamilo, F., 1995. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited.2. Gold, R., 1967. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory, 13(4), pp. 619—621. DOI: https://doi.org/10.1109/TIT.1967.10540483. Ipatov, V.P., 2004. Spread Spectrum and CDMA. Principles and Applications. Wiley. DOI: https://doi.org/10.1002/04700918004. Simon, M., Omura, J.K., Scholtz, R.A., Levitt, B.K., 1994. Spread Spectrum Communications Handbook. NY McGraw-Hill.5. Proakis, J.G., Salehi, M., 2008. Digital Communications. 5th ed. McGraw-Hill, New York.6. Dillinger, M., Madani, K., Alonistioti, N., 2003. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons.7. Rami, A., Dezfouli, B., 2018. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun., 128, Sept., pp. 106—125. DOI: https://doi.org/10.1016/j.comcom.2018.07.0128. Perepelitsyn, A., Shulga, D., 2012. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. In: Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012, pp. 43—440.9. Kulanov, V., Kharchenko, V., Perepelitsyn, A., 2009. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. In: Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009, pp. 322—325.10. Mazurkov, M., Sokolov, A., 2015. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation, 5(3), pp. 203—209.11. Avdeyenko, G., 2020. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. In: 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020, pp. 177—181. DOI: https://doi.org/10.1109/PICST51311.2020.9467904
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1460
work_keys_str_mv AT varavinav aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT yermakhp aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT kudryavtsevdp aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT vasilievos aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT balabanmv aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT melnykss aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT zheltovvm aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT fateevov aninterferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT varavinav zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT yermakhp zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT kudryavtsevdp zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT vasilievos zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT balabanmv zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT melnykss zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT zheltovvm zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT fateevov zavadozahiŝenasistemazvâzkudlâperedačícifrovihdanihnabazíbagatokanalʹnogokorelometračastina1rozrobkaalgoritmuformuvannâtadekoduvannâsignalusistemipídšumovogozvâzku
AT varavinav interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT yermakhp interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT kudryavtsevdp interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT vasilievos interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT balabanmv interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT melnykss interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT zheltovvm interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
AT fateevov interferenceimmunecommunicationsystemfordigitaldatatransmissionbasedonamultichannelcorrelatorpart1developmentofasignalformationanddecodingalgorithmforthesubnoisecommunicationsystem
first_indexed 2025-12-02T15:28:19Z
last_indexed 2025-12-02T15:28:19Z
_version_ 1851757483495784448
spelling rpra-journalorgua-article-14602025-03-23T08:36:12Z AN INTERFERENCE-IMMUNE COMMUNICATION SYSTEM FOR DIGITAL DATA TRANSMISSION BASED ON A MULTI-CHANNEL CORRELATOR Part 1. DEVELOPMENT OF A SIGNAL FORMATION AND DECODING ALGORITHM FOR THE SUB-NOISE COMMUNICATION SYSTEM ЗАВАДОЗАХИЩЕНА СИСТЕМА ЗВ’ЯЗКУ ДЛЯ ПЕРЕДАЧІ ЦИФРОВИХ ДАНИХ НА БАЗІ БАГАТОКАНАЛЬНОГО КОРЕЛОМЕТРА. Частина 1. РОЗРОБКА АЛГОРИТМУ ФОРМУВАННЯ ТА ДЕКОДУВАННЯ СИГНАЛУ СИСТЕМИ ПІДШУМОВОГО ЗВ’ЯЗКУ Varavin, A. V. Yermak, H. P. Kudryavtsev, D. P. Vasiliev, O. S. Balaban, M. V. Melnyk, S. S. Zheltov, V. M. Fateev, O. V. communication system; interference-immune communication; DSSS technology; Gold codes; multi-channel correlator; SDR receiver; digital stream система зв'язку; завадозахищений зв'язок; технологія DSSS; коди Голда; багатоканальний корелометр; SDR-приймач; цифровий потік Subject and Purpose. The work aims to develop and study an interference-immune radio communication system for transmitting and receiving digital information and video images using a Software-Defined Radio (SDR).Methods and Methodology. The processes of generation, reception, and decoding of broadband pseudorandom signals formed by the Direct Sequence Spread Spectrum (DSSS) technology are mathematically modeled. Basic software solutions are experimentally developed for data receiving, transforming, processing, and displaying. The functional capabilities of the hardware and software tools are evaluated and analyzed for their subsequent integration into the system. Results. An algorithm has been developed for generating and decoding from a sub-noise spread spectrum correlation communication system using DSSS technology. The processes of data formation and transmission by noise-like signals based on the Gold codes have been modeled. An algorithm for noise-like signal identification has been developed, based on the mathematical determination of the autocorrelation function which evaluates the relationship (degree of similarity) between the signal and its time-shifted copy. To maintain the phase coherence between the expected (received from air) and reference (key) signals at any time, a cyclically operating multi-channel correlator was developed. We estimated the maximum radio data rates over the radio channels when transmitting low-frequency telemetry signals, control signals, and video signals.Conclusions. The research and development of digital communication channels using signal coding through the Direct Sequence Spread Spectrum (DSSS) method along with Gold codes have demonstrated the potential to create compact devices for establishing interference-immune and low-noise multi-channel communication which is particularly suitable for data transmission in modern environments.Keywords: communication system, interference-immune communication, DSSS technology, Gold codes, multi-channel correlator, SDR receiver, digital streamManuscript submitted  25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022REFERENCES1. Kamilo, F., 1995. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited.2. Gold, R., 1967. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory, 13(4), pp. 619—621. DOI: https://doi.org/10.1109/TIT.1967.10540483. Ipatov, V.P., 2004. Spread Spectrum and CDMA. Principles and Applications. Wiley. DOI: https://doi.org/10.1002/04700918004. Simon, M., Omura, J.K., Scholtz, R.A., Levitt, B.K., 1994. Spread Spectrum Communications Handbook. NY McGraw-Hill.5. Proakis, J.G., Salehi, M., 2008. Digital Communications. 5th ed. McGraw-Hill, New York.6. Dillinger, M., Madani, K., Alonistioti, N., 2003. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons.7. Rami, A., Dezfouli, B., 2018. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun., 128, Sept., pp. 106—125. DOI: https://doi.org/10.1016/j.comcom.2018.07.0128. Perepelitsyn, A., Shulga, D., 2012. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. In: Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012, pp. 43—440.9. Kulanov, V., Kharchenko, V., Perepelitsyn, A., 2009. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. In: Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009, pp. 322—325.10. Mazurkov, M., Sokolov, A., 2015. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation, 5(3), pp. 203—209.11. Avdeyenko, G., 2020. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. In: 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020, pp. 177—181. DOI: https://doi.org/10.1109/PICST51311.2020.9467904 Предмет і мета роботи. Метою роботи є розробка й дослідження завадозахищеної системи радіозв’язку для передачі та приймання цифрової інформації і відеозображень із використанням программно-обумовленої радіосистеми.Методи та методологія. У роботі проведено математичне моделювання процесів формування, випромінювання, приймання та декодування широкосмугових псевдовипадкових сигналів, формованих за технологією direct sequence spread spectrum (DSSS), — розширення спектра методом прямої послідовності, експериментальне відпрацювання основних програмних рішень із приймання, перетворення, обробки та відображення даних, оцінка й аналіз функціональних можливостей програмно-апаратних засобів для їхнього наступного синтезу в систему.Результати. Розроблено алгоритм формування та декодування сигналу системи підшумового зв’язку з розширеним спектром із використанням технології DSSS. Проведено моделювання процесу формування та передачі даних псевдошумовими сигналами на основі кодів Голда. Розроблено алгоритм ідентифікації шумоподібних сигналів, заснований на можливості математичного визначення функції автокореляції, яка визначає взаємозв’язок (ступінь подібності) між сигналом і його зрушеною в часі копією. Для забезпечення когерентності фази між очікуваним (прийнятим з ефіру) та опорними (ключем) сигналами в довільний момент часу було розроблено циклічно працюючий багатоканальний корелометр. Проведено оцінку максимальної швидкодії радіоканалів під час передачі сигналів.Висновки. Розробка та дослідження цифрових каналів зв’язку з використанням кодування сигналу за методом розширення спектра прямою послідовністю та використання кодів Голда дозволяє розробляти малогабаритні пристрої для організації завадозахищеного підшумового багатоканального зв’язку для передачі даних у сучасних умовах.Ключові слова: система зв'язку, завадозахищений зв'язок, технологія DSSS, коди Голда, багатоканальний корелометр, SDR-приймач, цифровий потікСтаття надійшла до редакції 25.07.2024Radio phys. radio astron. 2025, 30(1): 011-022БІБЛІОГРАФІЧНИЙ СПИСОК1. Kamilo F. Wireless Digital Communications: Modulation and Spread Spectrum Applications. India, Prentice-Hall of India Pvt. Limited: 1995. 522 p.2. Gold R. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inf. Theory. 1967. Vol. 13, Iss. 4. P. 619—621. DOI: 10.1109/TIT.1967.10540483. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications. Wiley: 2004. 396 p.4. Simon M., Omura J.K., Scholtz R.A., Levitt B.K. Spread Spectrum Communications Handbook. NY McGraw-Hill: 1994. 1248 p.5. Proakis J.G., Salehi M. Digital Communications. 5th ed. McGraw-Hill, New York: 2008. 1150 p.6. Dillinger M., Madani K., Alonistioti N. Software Defined Radio: Architectures, Systems and Functions. Wiley & Sons: 2003. 454 p.7. Rami A., Dezfouli B. Software-defined Radios: Architecture, State-of-the-art, and Challenges. Comput. Commun. Vol. 128, Sept. 2018. P. 106—125. DOI: 10.1016/j.comcom.2018.07.0128. Perepelitsyn A., Shulga D. FPGA Technologies in Medical Equipment: Electrical Impedance Tomography. Proc. of IEEE EastWest Design & Test Symposium (EWDTS). Kharkov, Ukraine, 14—17 Sept. 2012. P. 43—440.9. Kulanov V., Kharchenko V., Perepelitsyn A. Parameterized IP Infrastructures for Fault-Tolerant FPGA-Based Systems: Development, Assessment, Case-Study. Proc. of IEEE East-West Design & Test Symposium (EWDTS). 2009. P. 322—325.10. Mazurkov M., Sokolov A. Recurrent synthesis methods of the sequences with optimal peak-to-average power ratio value of walsh-hadamard spectrum. Informatics and Mathematical Methods in Simulation. 2015. Vol. 5, Iss. 3. P. 203—209.11. Avdeyenko G. Generating DVB-S2 Signals by Application of Nuand BladeRF x40 SDR Transceiver. 2020 IEEE Int. Conf. on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 6—9 Oct. 2020. P. 177—181. Видавничий дім «Академперіодика» 2025-03-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1460 10.15407/rpra30.01.011 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 1 (2025); 11 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 1 (2025); 11 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 1 (2025); 11 2415-7007 1027-9636 10.15407/rpra30.01 uk http://rpra-journal.org.ua/index.php/ra/article/view/1460/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY