REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS

Subject and Purpose. The subjects of this research are the internal electric field and the electric polarization vector, both existing in the volume of a deformed piezoelectric crystal. The work has been aimed at determining the dynamic electric polarization within the Z-section of a class 6 mm piez...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Linchevsky, I. V., Chursanova, M. V.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2025
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1470
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1470
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-06-18T13:42:47Z
collection OJS
language Ukrainian
topic piezoelectric
surface acoustic waves
single crystal
spellingShingle piezoelectric
surface acoustic waves
single crystal
Linchevsky, I. V.
Chursanova, M. V.
REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
topic_facet piezoelectric
surface acoustic waves
single crystal
п’єзоелектрик
поверхневі акустичні хвилі
монокристал
format Article
author Linchevsky, I. V.
Chursanova, M. V.
author_facet Linchevsky, I. V.
Chursanova, M. V.
author_sort Linchevsky, I. V.
title REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
title_short REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
title_full REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
title_fullStr REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
title_full_unstemmed REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS
title_sort registration of surface acoustic waves in z-sections of piezoelectric single crystals zno and cds
title_alt РЕЄСТРАЦІЯ ПОВЕРХНЕВИХ АКУСТИЧНИХ ХВИЛЬ У Z-ЗРІЗАХ П’ЄЗОЕЛЕКТРИЧНИХ МОНОКРИСТАЛІВ ZnO ТА CdS
description Subject and Purpose. The subjects of this research are the internal electric field and the electric polarization vector, both existing in the volume of a deformed piezoelectric crystal. The work has been aimed at determining the dynamic electric polarization within the Z-section of a class 6 mm piezoelectric single crystal, deformed by surface acoustic waves (SAW), and estimating the sensitivity of the electrode pair of the inter-digit transducer in the mode of recording surface acoustic waves in Z-sections of the piezoelectric crystals.Methods and Methodology. The analysis proceeds from construction of a mathematical model for the SAW detector, through the use of an appropriate set of differential equations. It is taken into account that the electric charge on an electrode is determined by the vector of dynamic electric polarization and the the electric field distribution along the electrode. The effects of cross-sectional dimensions of the electrodes, the scattered electric field, and of the harmonic electrical polarization vector are  taken into account.Results. Mathematical models have been constructed for a long electrode of finite cross-sectional dimensions, intended for surface acoustic wave (SAW) excitation in Z-sections of piezoelectric crystals of crystallographic class 6mm. The problem of calculating the electric charge distributions along the electrodes of the inter-digit transducer which operates in the SAW detector mode has been solved with account of the effects owing to the scattered electric field and harmonic wave motion of the electric polarization vector. Numerical values have been determined for the sensitivity of the inter-digit transducer operated in the receiving mode. In the case of ZnO and CdS single crystals the figures are 7.73·1010 and, 3.08·1010 V/m, respectively.Conclusions. A general solution to the boundary value problem of the internal electric field in the volume of a deformed piezoelectric has been obtained. The dynamic electric polarization has been determined within a Z-section plane of the single-crystal piezoelectric of class 6mm in the process of its interaction with a SAW. A mathematical model has been developed for a SAW detector, taking into account the effect of the electrodes’ cross-section size. The operating sensitivity of a pair of electrodes of the inter-digit transducer has been estimated for the SAW registration mode.Keywords: piezoelectric; surface acoustic waves; single crystalManuscript submitted 22.01.2025Radio phys. radio astron. 2025, 30(2): 129-140REFERENCES1. Caliendo, C., Hamidullah, M., 2019. Guided acoustic wave sensors for liquid environments. J. Phys. D: Appl. Phys., 52(15), 153001. DOI: https://doi.org/10.1088/1361-6463/aafd0b2. Poveda, A.C., Buhler, D.D., Saez, A.C., Santos, P.V., de Lima, M.M., 2019. Semiconductor optical waveguide devices mod- ulated by surface acoustic waves. J. Phys. D Appl. Phys., 52(25), 253001. DOI: https://doi.org/10.1088/1361-6463/ab14643. Weiß, M., Krenner, H.J., 2018. Interfacing quantum emitters with propagating surface acoustic waves. J. Phys. D Appl. Phys., 51(37), P. 373001. DOI: https://doi.org/10.1088/1361-6463/aace3c4. Varlamov, A.V., Lebedev, V.V., Agruzov, P.M., Ilichev, I.V., Shamrai, L.V., Shamrai, A.V., 2019. Acousto-optic frequencyshift modulators with acoustic and optic waveguides on X-cutlithium niobate substrates. J. Phys. Conf. Ser., 1326, 012011. DOI: https://doi.org/10.1088/1742-6596/1326/1/0120115. Jahanshahi, P., Wei, Q., Jie, Z., Zalnezhad, E., 2018. Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System. Biotechnol. Bioprocess Eng., 23, pp. 394–404. DOI: https://doi.org/10.1007/s12257-017-0432-56. Delsing, P., Cleland, A.N., Schuetz, M.J.A., Knörzer, J., Giedke, G., Cirac, J.I., Srinivasan, K., Wu, M., Balram, K.C., Bäuerle, C., Meunier, T., Ford, C.J.B., Santos, P.V., Cerda-Méndez, E., Wang, H., Krenner, H.J., Nysten, E.D.S., Weiß, M., Nash, G.R., Thevenard, L., Gourdon, C., Rovillain, P., Marangolo, M., Duquesne, J.-Y., Fischerauer, G., Ruile, W., Reiner, A., Paschke, B., Denysenko, D., Volkmer, D., Wixforth, A., Bruus, H., Wiklund, M., Reboud, J., Cooper, J.M., Fu, Y.Q., Brugger, M.S., Rehfeldt, F., and Westerhausen, C., 2019. Surface acoustic waves roadmap Topical Review. J. Phys. D: Appl. Phys., 52(35), 353001. DOI: https://doi.org/10.1088/1361-6463/ab1b047. Aleksandrova, M., Badarov, D., 2022. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits. Sensors, 22(13), 4917. DOI: https://doi.org/10.3390/s221349178. Ziping, W., Xiqiang, X., Lei, Q., Jiatao, W., Yue, F., and Maoyuan, T., 2021. Review Article Research on the Progress of Interdigital Transducer (IDT) for Structural Damage Monitoring. J. Sens., 2021, 6630658. DOI: https://doi.org/10.1155/2021/66306589. Hatfield, A., Zhang, S., Li, Bo, Xu, Tian-Bing, 2022. Finite element modeling for a flexible transparent piezoelectric surface acoustic wave transducer. In: Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil In- frastructure, and Transportation XVI. Proc. of SPIE, 12047, 1204713. DOI: https://doi.org/10.1117/12.261327510. Draper, A., Deng, Z., 2022. Multiphysics modeling of printed surface acoustic wave thermometer. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. of SPIE, 12046, 1204608. DOI: https://doi.org/10.1117/12.261314111. Wang, T., Green, R., Guldiken, R., Wang, J., Mohapatra, S., Mohapatra, S.S., 2019. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity. Sensors, 19(8), 1749. DOI: https://doi.org/10.3390/s1908174912. Lepikh, Ya.I., 2023. Determination of the optimal physical and mathematical model and weight functions for calculating the topology of counterpine converters of surface acoustic waves. Sensor Electronics and Мicrosystem Technologies, 20(1), pp. 11—19. DOI: https://doi.org/10.18524/1815-7459.2023.1.27594313. Viktorov, I.A., 1981. Sound surface waves in solids. Moscow: Nauka Publ.14. Linchevskyi, I.V., 2019. Excitation of Surface Acoustic Waves in a Z-section of Piezoelectric Crystals by the Electric Field of a Long Electrode. Int. J. Appl. Phys., 6(3), pp. 42—50. DOI: https://doi.org/10.14445/23500301/IJAP-V6I3P10815. Linchevskyi, I.V., Petrischev, O.N., 2020. Surface Acoustic Waves in Z-Sections of Piezoelectric Monocrystals of Hexagonal Syngony. Radioelectronics and Communications Systems, 63(3), pp. 156—170. DOI: https://doi.org/10.20535/S002134702003004816. Linchevskyi, I.V., 2021. Excitation Features of Surface Acoustic Waves by Interdigital Transducer in Piezoelectric Crystals. Radioelectronics and Communications Systems, 64(8), pp. 426—439. DOI: https://doi.org/10.20535/S002134702108003317. Tamm, I.E., 1979. Fundamentals of the Theory of Electricity. Moscow: Mir Publ.18. Catti, M., Noel, Y., Dovesi, R., 2003. Full Piezoeletric Tensors of Wurtzite and Zinc Blende ZnO and ZnS by First-Principles Calculations. J. Phys. Chem. Sol., 64(11), pp. 2183—190. DOI: https://doi.org/10.1016/S0022-3697(03)00219-119. Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M., and Shen, H., 1999. Structural, optical, and sur- face acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys., 85(5), pp. 2595—2602. DOI: https://doi.org/10.1063/1.369577
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1470
work_keys_str_mv AT linchevskyiv registrationofsurfaceacousticwavesinzsectionsofpiezoelectricsinglecrystalsznoandcds
AT chursanovamv registrationofsurfaceacousticwavesinzsectionsofpiezoelectricsinglecrystalsznoandcds
AT linchevskyiv reêstracíâpoverhnevihakustičnihhvilʹuzzrízahpêzoelektričnihmonokristalívznotacds
AT chursanovamv reêstracíâpoverhnevihakustičnihhvilʹuzzrízahpêzoelektričnihmonokristalívznotacds
first_indexed 2025-12-02T15:28:48Z
last_indexed 2025-12-02T15:28:48Z
_version_ 1850423627756863488
spelling rpra-journalorgua-article-14702025-06-18T13:42:47Z REGISTRATION OF SURFACE ACOUSTIC WAVES in Z-SECTIONS of PIEZOELECTRIC SINGLE CRYSTALS ZnO and CdS РЕЄСТРАЦІЯ ПОВЕРХНЕВИХ АКУСТИЧНИХ ХВИЛЬ У Z-ЗРІЗАХ П’ЄЗОЕЛЕКТРИЧНИХ МОНОКРИСТАЛІВ ZnO ТА CdS Linchevsky, I. V. Chursanova, M. V. piezoelectric; surface acoustic waves; single crystal п’єзоелектрик; поверхневі акустичні хвилі; монокристал Subject and Purpose. The subjects of this research are the internal electric field and the electric polarization vector, both existing in the volume of a deformed piezoelectric crystal. The work has been aimed at determining the dynamic electric polarization within the Z-section of a class 6 mm piezoelectric single crystal, deformed by surface acoustic waves (SAW), and estimating the sensitivity of the electrode pair of the inter-digit transducer in the mode of recording surface acoustic waves in Z-sections of the piezoelectric crystals.Methods and Methodology. The analysis proceeds from construction of a mathematical model for the SAW detector, through the use of an appropriate set of differential equations. It is taken into account that the electric charge on an electrode is determined by the vector of dynamic electric polarization and the the electric field distribution along the electrode. The effects of cross-sectional dimensions of the electrodes, the scattered electric field, and of the harmonic electrical polarization vector are  taken into account.Results. Mathematical models have been constructed for a long electrode of finite cross-sectional dimensions, intended for surface acoustic wave (SAW) excitation in Z-sections of piezoelectric crystals of crystallographic class 6mm. The problem of calculating the electric charge distributions along the electrodes of the inter-digit transducer which operates in the SAW detector mode has been solved with account of the effects owing to the scattered electric field and harmonic wave motion of the electric polarization vector. Numerical values have been determined for the sensitivity of the inter-digit transducer operated in the receiving mode. In the case of ZnO and CdS single crystals the figures are 7.73·1010 and, 3.08·1010 V/m, respectively.Conclusions. A general solution to the boundary value problem of the internal electric field in the volume of a deformed piezoelectric has been obtained. The dynamic electric polarization has been determined within a Z-section plane of the single-crystal piezoelectric of class 6mm in the process of its interaction with a SAW. A mathematical model has been developed for a SAW detector, taking into account the effect of the electrodes’ cross-section size. The operating sensitivity of a pair of electrodes of the inter-digit transducer has been estimated for the SAW registration mode.Keywords: piezoelectric; surface acoustic waves; single crystalManuscript submitted 22.01.2025Radio phys. radio astron. 2025, 30(2): 129-140REFERENCES1. Caliendo, C., Hamidullah, M., 2019. Guided acoustic wave sensors for liquid environments. J. Phys. D: Appl. Phys., 52(15), 153001. DOI: https://doi.org/10.1088/1361-6463/aafd0b2. Poveda, A.C., Buhler, D.D., Saez, A.C., Santos, P.V., de Lima, M.M., 2019. Semiconductor optical waveguide devices mod- ulated by surface acoustic waves. J. Phys. D Appl. Phys., 52(25), 253001. DOI: https://doi.org/10.1088/1361-6463/ab14643. Weiß, M., Krenner, H.J., 2018. Interfacing quantum emitters with propagating surface acoustic waves. J. Phys. D Appl. Phys., 51(37), P. 373001. DOI: https://doi.org/10.1088/1361-6463/aace3c4. Varlamov, A.V., Lebedev, V.V., Agruzov, P.M., Ilichev, I.V., Shamrai, L.V., Shamrai, A.V., 2019. Acousto-optic frequencyshift modulators with acoustic and optic waveguides on X-cutlithium niobate substrates. J. Phys. Conf. Ser., 1326, 012011. DOI: https://doi.org/10.1088/1742-6596/1326/1/0120115. Jahanshahi, P., Wei, Q., Jie, Z., Zalnezhad, E., 2018. Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System. Biotechnol. Bioprocess Eng., 23, pp. 394–404. DOI: https://doi.org/10.1007/s12257-017-0432-56. Delsing, P., Cleland, A.N., Schuetz, M.J.A., Knörzer, J., Giedke, G., Cirac, J.I., Srinivasan, K., Wu, M., Balram, K.C., Bäuerle, C., Meunier, T., Ford, C.J.B., Santos, P.V., Cerda-Méndez, E., Wang, H., Krenner, H.J., Nysten, E.D.S., Weiß, M., Nash, G.R., Thevenard, L., Gourdon, C., Rovillain, P., Marangolo, M., Duquesne, J.-Y., Fischerauer, G., Ruile, W., Reiner, A., Paschke, B., Denysenko, D., Volkmer, D., Wixforth, A., Bruus, H., Wiklund, M., Reboud, J., Cooper, J.M., Fu, Y.Q., Brugger, M.S., Rehfeldt, F., and Westerhausen, C., 2019. Surface acoustic waves roadmap Topical Review. J. Phys. D: Appl. Phys., 52(35), 353001. DOI: https://doi.org/10.1088/1361-6463/ab1b047. Aleksandrova, M., Badarov, D., 2022. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits. Sensors, 22(13), 4917. DOI: https://doi.org/10.3390/s221349178. Ziping, W., Xiqiang, X., Lei, Q., Jiatao, W., Yue, F., and Maoyuan, T., 2021. Review Article Research on the Progress of Interdigital Transducer (IDT) for Structural Damage Monitoring. J. Sens., 2021, 6630658. DOI: https://doi.org/10.1155/2021/66306589. Hatfield, A., Zhang, S., Li, Bo, Xu, Tian-Bing, 2022. Finite element modeling for a flexible transparent piezoelectric surface acoustic wave transducer. In: Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil In- frastructure, and Transportation XVI. Proc. of SPIE, 12047, 1204713. DOI: https://doi.org/10.1117/12.261327510. Draper, A., Deng, Z., 2022. Multiphysics modeling of printed surface acoustic wave thermometer. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. of SPIE, 12046, 1204608. DOI: https://doi.org/10.1117/12.261314111. Wang, T., Green, R., Guldiken, R., Wang, J., Mohapatra, S., Mohapatra, S.S., 2019. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity. Sensors, 19(8), 1749. DOI: https://doi.org/10.3390/s1908174912. Lepikh, Ya.I., 2023. Determination of the optimal physical and mathematical model and weight functions for calculating the topology of counterpine converters of surface acoustic waves. Sensor Electronics and Мicrosystem Technologies, 20(1), pp. 11—19. DOI: https://doi.org/10.18524/1815-7459.2023.1.27594313. Viktorov, I.A., 1981. Sound surface waves in solids. Moscow: Nauka Publ.14. Linchevskyi, I.V., 2019. Excitation of Surface Acoustic Waves in a Z-section of Piezoelectric Crystals by the Electric Field of a Long Electrode. Int. J. Appl. Phys., 6(3), pp. 42—50. DOI: https://doi.org/10.14445/23500301/IJAP-V6I3P10815. Linchevskyi, I.V., Petrischev, O.N., 2020. Surface Acoustic Waves in Z-Sections of Piezoelectric Monocrystals of Hexagonal Syngony. Radioelectronics and Communications Systems, 63(3), pp. 156—170. DOI: https://doi.org/10.20535/S002134702003004816. Linchevskyi, I.V., 2021. Excitation Features of Surface Acoustic Waves by Interdigital Transducer in Piezoelectric Crystals. Radioelectronics and Communications Systems, 64(8), pp. 426—439. DOI: https://doi.org/10.20535/S002134702108003317. Tamm, I.E., 1979. Fundamentals of the Theory of Electricity. Moscow: Mir Publ.18. Catti, M., Noel, Y., Dovesi, R., 2003. Full Piezoeletric Tensors of Wurtzite and Zinc Blende ZnO and ZnS by First-Principles Calculations. J. Phys. Chem. Sol., 64(11), pp. 2183—190. DOI: https://doi.org/10.1016/S0022-3697(03)00219-119. Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M., and Shen, H., 1999. Structural, optical, and sur- face acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys., 85(5), pp. 2595—2602. DOI: https://doi.org/10.1063/1.369577 Предмет і мета роботи. Предметом досліджень є внутрішнє електричне поле та вектор електричної поляризації в об’ємі деформованого п’єзоелектрика. Метою роботи є визначення динамічної електричної поляризації у Z-зрізі п’єзоелектричного монокристала класу 6mm, що деформується поверхневими акустичними хвилями (ПАХ), та визначення чутливості електродної пари зустрічно-штирового перетворювача в режимі реєстрації ПАХ у Z-зрізах п’єзоелектричних кристалів кристалографічного класу 6 mm.Методи та методологія. Дослідження та аналіз базуються на методі побудови математичної моделі приймача ПАХ із використанням системи диференціальних рівнянь. Враховано, що електричний заряд на електроді визначається вектором динамічної електричної поляризації та розподілом електричного поля електрода. Береться до уваги вплив розмірів поперечного перерізу електродів, електричного поля розсіяння, гармонічної хвилі вектора електричної поляризації на процес реєстрації ПАХ.Результати. Побудовано математичні моделі довгого електрода з кінцевими розмірами поперечного перерізу в режимі збудження ПАХ у Z-зрізах п’єзоелектричних кристалів кристалографічного класу 6mm. Розв’язано задачу розрахунку електричного заряду на електродах зустрічно-штирового перетворювача в режимі приймача ПАХ з урахуванням впливу електричного поля розсіяння та наявності гармонічної хвилі вектора електричної поляризації. Визначено числові значення чутливості в режимі приймання зустрічно-штирового перетворювача для монокристалів ZnO та CdS, що складають 7.73·1010  і 3.08·1010 В/м.Висновки. Отримано загальне розв’язання граничної задачі про внутрішнє електричне поле в об’ємі деформованого п’єзоелектрика. Визначено динамічну електричну поляризацію Z-зрізу п’єзоелектричного монокристала класу 6mm при взаємодії з ПАХ. Побудовано математичну модель приймача ПАХ з урахуванням впливу розмірів поперечного перерізу електродів. Отримано значення чутливості електродної пари зустрічно-штирового перетворювача в режимі реєстрації ПАХ у Z-зрізах п’єзоелектричних кристалів кристалографічного класу 6mm.Ключові слова: п’єзоелектрик; поверхневі акустичні хвилі; монокристалСтаття надійшла до редакції 22.01.2025Radio phys. radio astron. 2025, 30(2): 129-140БІБЛІОГРАФІЧНИЙ СПИСОК1. Caliendo C., Hamidullah M. Guided acoustic wave sensors for liquid environments. J. Phys. D: Appl. Phys. 2019. Vol. 52, Iss. 15. 153001. DOI: 10.1088/1361-6463/aafd0b2. Poveda A.C., Buhler D.D., Saez A.C., Santos P.V., de Lima M.M. Semiconductor optical waveguide devices modulated by surface acoustic waves. J. Phys. D Appl. Phys. 2019. Vol. 52, Iss. 25. 253001. DOI: 10.1088/1361-6463/ab14643. Weiß M., Krenner H.J. Interfacing quantum emitters with propagating surface acoustic waves. J. Phys. D Appl. Phys. 2018. Vol. 51, Iss. 37. 373001. DOI: 10.1088/1361-6463/aace3c4. Varlamov A.V., Lebedev V.V., Agruzov P.M., Ilichev I.V., Shamrai L.V., Shamrai A.V. Acousto-optic frequency shift mod- ulators with acoustic and optic waveguides on X-cutlithium niobate substrates. J. Phys. Conf. Ser. 2019. Vol. 1326. 012011. DOI: 10.1088/1742-6596/1326/1/0120115. Jahanshahi P., Wei Q., Jie Z., Zalnezhad E. Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System. Biotechnol. Bioprocess Eng. 2018. Vol. 23. P. 394—404. DOI: 10.1007/s12257-017-0432-56. Delsing P., Cleland A.N., Schuetz M.J.A., Knörzer J., Giedke G., Cirac J.I., Srinivasan K., Wu M., Balram K.C., Bäuerle C., Meunier T., Ford C.J.B., Santos P.V., Cerda-Méndez E., Wang H., Krenner H.J., Nysten E.D.S., Weiß M., Nash G.R., Thevenard L., Gourdon C., Rovillain P., Marangolo M., Duquesne J.-Y., Fischerauer G., Ruile W., Reiner A., Paschke B., Denysenko D., Volkmer D., Wixforth A., Bruus H., Wiklund M., Reboud J., Cooper J.M., Fu Y.Q., Brugger M.S., Rehfeldt F., and Westerhausen C. Surface acoustic waves roadmap Topical Review. J. Phys. D: Appl. Phys. 2019. Vol. 52, Iss. 35. 353001. DOI: 10.1088/1361-6463/ab1b047. Aleksandrova M., Badarov D. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits. Sensors. 2022. Vol. 22, Iss. 13. 4917. DOI: 10.3390/s221349178. Ziping W., Xiqiang X., Lei Q., Jiatao W., Yue F., and Maoyuan T. Review Article Research on the Progress of Interdigital Trans- ducer (IDT) for Structural Damage Monitoring. Journal of Sensors. 2021. Vol. 2021. 6630658. DOI: 10.1155/2021/66306589. Hatfield A., Zhang S., Li Bo, Xu Tian-Bing. Finite element modeling for a flexible transparent piezoelectric surface acoustic wave transducer. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI. Proc. of SPIE. 2022. Vol. 12047. 1204713. DOI: 10.1117/12.261327510. Draper A., Deng Z. Multiphysics modeling of printed surface acoustic wave thermometer. Sensors and Smart Structures Tech- nologies for Civil, Mechanical, and Aerospace Systems. Proc. of SPIE. 2022. Vol. 12046. 1204608. DOI: 10.1117/12.261314111. Wang T., Green R., Guldiken R., Wang J., Mohapatra S., Mohapatra S. S. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity. Sensors. 2019. Vol. 19, Iss. 8. 1749. DOI: 10.3390/s1908174912. Lepikh Ya.I. Determination of the optimal physical and mathematical model and weight functions for calculating the to- pology of counterpine converters of surface acoustic waves. Sensor Electronics and Мicrosystem Technologies. 2023. Vol. 20, Iss. 1. P. 11—19. DOI:10.18524/1815-7459.2023.1.27594313. Viktorov I.A. Sound surface waves in solids. Moscow: Nauka, 1981. 287 p.14. Linchevskyi I.V. Excitation of Surface Acoustic Waves in a Z-section of Piezoelectric Crystals by the Electric Field of a Long Electrode. Int. J. Appl. Phys. 2019. Vol. 6, Iss. 3. P. 42—50. DOI: 10.14445/23500301/IJAP-V6I3P10815. Linchevskyi I.V., Petrischev O.N. Surface Acoustic Waves in Z-Sections of Piezoelectric Monocrystals of Hexagonal Syn- gony. Radioelectronics and Communications Systems. 2020. Vol. 63, Iss. 3. P. 156—170. DOI: 10.20535/S002134702003004816. Linchevskyi I.V. Excitation Features of Surface Acoustic Waves by Interdigital Transducer in Piezoelectric Crystals. Radio- electronics and Communications Systems. 2021. Vol. 64, Iss. 8. P. 426—439. DOI: 10.20535/S002134702108003317. Tamm I.E. Fundamentals of the Theory of Electricity. Moscow: Mir Publ, 1979. 685 p.18. Catti M., Noel Y., Dovesi R. Full Piezoeletric Tensors of Wurtzite and Zinc Blende ZnO and ZnS by First-Principles Calcu- lations J. Phys. Chem. Sol. 2003. Vol. 64, Iss. 11. P. 2183—2190. DOI: 10.1016/S0022-3697(03)00219-119. Gorla C.R., Emanetoglu N.W., Liang S., Mayo W.E., Lu Y., Wraback M., and Shen H. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 1999. Vol. 85, Iss. 5. P. 2595—2602. DOI: 10.1063/1.369577 Видавничий дім «Академперіодика» 2025-06-12 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1470 10.15407/rpra30.02.129 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 2 (2025); 129 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 2 (2025); 129 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 2 (2025); 129 2415-7007 1027-9636 10.15407/rpra30.02 uk http://rpra-journal.org.ua/index.php/ra/article/view/1470/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY