EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES

Subject and Purpose. The paper presents research into the effect of silver nanoparticles on the efficiency of excitation energy transfer in donor-acceptor mixtures of organic dyes. These mixtures make active media in luminescent solar concentrators and luminescent transformers. Our concern is to exp...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Nikolaiev, S. V., Pozhar, V. V., Dzyubenko, M. I., Nikolaiev, K. S.
Format: Article
Language:Ukrainian
Published: Видавничий дім «Академперіодика» 2025
Subjects:
Online Access:http://rpra-journal.org.ua/index.php/ra/article/view/1476
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Radio physics and radio astronomy

Institution

Radio physics and radio astronomy
id rpra-journalorgua-article-1476
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-09-16T09:25:48Z
collection OJS
language Ukrainian
topic silver nanoparticles
plasmon resonance
dye molecules
donor-acceptor mixtures
energy transfer
plasmon-coupled resonance energy transfer
spellingShingle silver nanoparticles
plasmon resonance
dye molecules
donor-acceptor mixtures
energy transfer
plasmon-coupled resonance energy transfer
Nikolaiev, S. V.
Pozhar, V. V.
Dzyubenko, M. I.
Nikolaiev, K. S.
EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
topic_facet silver nanoparticles
plasmon resonance
dye molecules
donor-acceptor mixtures
energy transfer
plasmon-coupled resonance energy transfer
наночастинка срібла
плазмонний резонанс
молекули барвників
донорно-акцепторна суміш
перенесення енергії
плазмонно-зв’язане резонансне перенесення енергії
format Article
author Nikolaiev, S. V.
Pozhar, V. V.
Dzyubenko, M. I.
Nikolaiev, K. S.
author_facet Nikolaiev, S. V.
Pozhar, V. V.
Dzyubenko, M. I.
Nikolaiev, K. S.
author_sort Nikolaiev, S. V.
title EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
title_short EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
title_full EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
title_fullStr EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
title_full_unstemmed EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES
title_sort effect of silver nanoparticles on energy transfer efficiency in donor-acceptor mixtures of organic dyes: improvement of active media for luminiscent technologies
title_alt ВПЛИВ НАНОЧАСТИНОК СРІБЛА НА ЕФЕКТИВНІСТЬ ПЕРЕНЕСЕННЯ ЕНЕРГІЇ В ДОНОРНО-АКЦЕПТОРНИХ СУМІШАХ ОРГАНІЧНИХ БАРВНИКІВ: УДОСКОНАЛЕННЯ АКТИВНИХ СЕРЕДОВИЩ ДЛЯ ЛЮМІНЕСЦЕНТНИХ ТЕХНОЛОГІЙ
description Subject and Purpose. The paper presents research into the effect of silver nanoparticles on the efficiency of excitation energy transfer in donor-acceptor mixtures of organic dyes. These mixtures make active media in luminescent solar concentrators and luminescent transformers. Our concern is to explore the possibility of boosting the excitation energy transfer in these media by adding plasmonic nanoparticles. The discussion centers on our experimental studies involving two donor-acceptor dye combinations: Coumarin 314 with Rhodamine 6G, and 3-Methoxybenzanthrone with Sulforhodamine 101, while varying acceptor dye concentrations.Methods and Methodology. The spectral-luminescent characteristics of aqueous-ethanolic solutions of both individual dyes and their mixtures are measured with and without silver nanoparticles synthesized by the citrate reduction method. Based on the spectral measurements, the energy transfer parameters for each donor-acceptor pair are calculated, and excitation en- ergy transfer efficiencies in the samples with and without nanoparticles are assessed.Results. It has been revealed that adding nanoparticles to the mixture improves the excitation energy transfer efficiency between donor-acceptor molecules, which is equivalent to increasing the critical transfer radius. It has been found that the factor causing the growth of the critical radius is independent of the concentration of acceptor dye molecules. So, the efficiency of excitation energy transfer in the examined nanocomposites is governed, first of all, by the interaction between donor molecules and plasmons of nanoparticles.Conclusions. Adding plasmonic nanoparticles to multicomponent dye-based active media enhances the efficiency of excitation energy transfer between molecules of donor-acceptor pairs. This enhancement occurs because localized surface plasmons provide an additional channel of energy transfer. The main factor to improve this energy transfer efficiency is the donor-plasmon interaction. Consequently, the development of nanocomposite media can be optimized through appropriate combinations of dyes and nanoparticles.Keywords: silver nanoparticles, plasmon resonance, dye molecules, donor-acceptor mixtures, energy transfer, plasmon-coupled resonance energy transferManuscript submitted 13.02.2025Radio phys. radio astron. 2025, 30(3): 193-201REFERENCES    1. Van Sark, W.G.J.H.M., Barnham, K.W.J., Slooff, L.H., Chatten, A.J., Büchtemann, A., Meyer, A., McCormack, S.J., Koole, R., Farrell, D.J., Bose, R., Bende, E., Burgers, A.R., Budel, T., Quilitz, Ja., Kennedy, M., Meyer, T., De Mello Donegá, C., Meijerink, A., Vanmaekelbergh, D., 2008. Luminescent Solar Concentrators — A review of recent results. Opt. Express, 16(26), pp. 21773—21792. DOI: https://doi.org/10.1364/OE.16.021773    2. Kulish, M.R., Kostylyov, V.P., Sachenko, A.V., Sokolovskyi, I.O., Khomenko, D.V., Shkrebtii, A.I. 2016. Luminescent con- verter of solar light into electrical energy. Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO), 19(3), pp. 229—247. DOI: https://doi.org/10.15407/spqeo19.03.229    3. Jo, K., Kim, H.J. 2021. Review of the Fundamental Principles and Performances on Lminescent Solar Concentrators. Appl. Sci. Converg. Technol., 30(1), pp. 14—20. DOI: https://doi.org/10.5757/ASCT.2021.30.1.14    4. Sibinski, M. 2023. Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Applications. Materials, 16, pp. 3112—3132. DOI: https://doi.org/10.3390/ma16083112    5. Bailey, S.T., Lokey, G.E., Hanes, M.S., Shearer, J.D.M., McLafferty, J.B., Beaumont, G.T., Baseler,T., Layhue, J.M., Broussard, D.R., Zhang, Y.Z., Wittmershaus, B.P., 2006. Optimized excitation energy transfer in a three-dye luminescent solar concen- trator. Sol. Energy Mater. Sol. Cells, 91(1), pp. 67—75. DOI: https://doi.org/10.1016/j.solmat.2006.07.011    6. Balaban, B., Doshay, S., Osborn, M., Rodriguez, Y., and Carter, S.A., 2014. The role of FRET in solar concentrator efficiency and color tunability. J. Luminesc., 146, pp. 256—262. DOI: https://doi.org/10.1016/j.jlumin.2013.09.049    7. Delgado-Sanchez, J.-M., Lillo-Bravo, I., Menéndez-Velázquez, A., 2021. Enhanced luminescent solar concentrator effi- ciency by Föster resonance energy transfer in a tunable six-dye absorber. Int. J. Energy Res., 45, pp. 11294—11304. DOI: https://doi.org/10.1002/er.6533    8. Zhang, B., Lyu, G., Kelly, E.A., Evans, R.C., 2022. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. Adv. Sci., 9(23). DOI: https://doi.org/10.1002/advs.202201160    9. Castelletto, S., Boretti, A., 2023. Luminescence solar concentrators: a technology update. Nano Energy, 109. 108269. DOI: https://doi.org/10.1016/j.nanoen.2023.108269    10. Föster, T., 1948. Intermolecular energy migration and fluorescence. Ann. Phys., 2, pp. 55—75.    11. Lakowicz, J.R., 2006. Principles of fluorescence spectroscopy. Springer eBooks. DOI: https://doi.org/10.1007/978-0-387-46312-4    12. Reil, F., Hohenester, U., Krenn J. R., Leitne, A., 2008. Förster-Type Resonant Energy Transfer Influenced by Metal Nanopar- ticles. Nano Lett., 8(12), pp. 4128—4133. DOI: https://doi.org/10.1021/nl801480m    13. Bobbara, S.R., 2011. Energy transfer between molecules in the vicinity of metal nanoparticle. dissertation. PhD thesis ed. Queen’s University. Available at: https://central.bac-lac.gc.ca/.item?id=TC-OKQ-6593&op=pdf&app=Library    14. Zhang, X., Marocico, C.A., Lunz, M., Gerard, V.A., Gun’Ko, Y.K., Lesnyak, V., Gaponik, N., Susha, A.S., Rogach, A.L., and Bradley, A.L., 2014. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8(2), pp. 1273—1283. DOI: https://doi.org/10.1021/nn406530m    15. Steele, J.M., Ramnarace, C.M., Farner, W.R., 2017. Surface plasmon enhanced FRET. In: Optical Sensing, Imaging, and Pho- ton Counting: Nanostructured Devices and Applications 2017: Proc. Vol. 10353. Event: SPIE Nanoscience + Engineering, 2017, San Diego, California, United States. DOI: https://doi.org/10.1117/12.2274218    16. Ding, W., Hsu, L.Y., Heaps, C.W., and Schatz, G.C., 2018. Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. J. Phys. Chem. C., 122(39), pp. 22650—22659. DOI: https://doi.org/10.1021/acs.jpcc.8b07210    17. Kaur, A., Kaur, P., Ahuja, S., 2020. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods. 12, pp. 5532—5550. DOI: https://doi.org/10.1039/D0AY01961E    18. He, Z., Li, F., Zuo, P., Tian, H., 2023. Principles and Applications of Resonance Energy Transfer      Involving Noble Metallic Nanoparticles. Materials, 16(8), 3083. DOI: https://doi.org/10.3390/ma16083083    19. Krasovitsky, B.M., Bolotin, B.M., 1976. Organic luminophores. L.: Chemistry Publ.    20. Nickolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nickolaev, K.S., 2019. Solid active media for tunable lasers based on dye- doped polyurethanes. Telecommunications and Radio Engineering, 78(8), pp. 725—741. DOI: https://doi.org/10.1615/TelecomRadEng.v78.i8.80    21. Nikolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nikolaev, K.S., 2018. Dependence of fluorescent characteristics of nanocom- posites on the basis of dye molecules and silver nanoparticles on the optical density of components. Telecommunications and Radio Engineering, 77(19), pp. 1675—1683. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i19.10    22. Andreev, A.N., Lazarenko, A.G., 2013. Measurement of particle dimensions in colloidal solutions using the correlation spectroscopy technique. Telecommunications and Radio Engineering, 73(18), pp. 1671—1678. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i18.60    23. Geddes, C.D.,  Lakowicz,  J.R., 2002.  Metal-Enhanced  Fluorescence. J. Fluoresc., 12(2),  pp. 121—129. DOI:  https://doi.org/10.1023/A:1016875709579
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1476
work_keys_str_mv AT nikolaievsv effectofsilvernanoparticlesonenergytransferefficiencyindonoracceptormixturesoforganicdyesimprovementofactivemediaforluminiscenttechnologies
AT pozharvv effectofsilvernanoparticlesonenergytransferefficiencyindonoracceptormixturesoforganicdyesimprovementofactivemediaforluminiscenttechnologies
AT dzyubenkomi effectofsilvernanoparticlesonenergytransferefficiencyindonoracceptormixturesoforganicdyesimprovementofactivemediaforluminiscenttechnologies
AT nikolaievks effectofsilvernanoparticlesonenergytransferefficiencyindonoracceptormixturesoforganicdyesimprovementofactivemediaforluminiscenttechnologies
AT nikolaievsv vplivnanočastinoksríblanaefektivnístʹperenesennâenergíívdonornoakceptornihsumíšahorganíčnihbarvnikívudoskonalennâaktivnihseredoviŝdlâlûmínescentnihtehnologíj
AT pozharvv vplivnanočastinoksríblanaefektivnístʹperenesennâenergíívdonornoakceptornihsumíšahorganíčnihbarvnikívudoskonalennâaktivnihseredoviŝdlâlûmínescentnihtehnologíj
AT dzyubenkomi vplivnanočastinoksríblanaefektivnístʹperenesennâenergíívdonornoakceptornihsumíšahorganíčnihbarvnikívudoskonalennâaktivnihseredoviŝdlâlûmínescentnihtehnologíj
AT nikolaievks vplivnanočastinoksríblanaefektivnístʹperenesennâenergíívdonornoakceptornihsumíšahorganíčnihbarvnikívudoskonalennâaktivnihseredoviŝdlâlûmínescentnihtehnologíj
first_indexed 2025-12-02T15:29:08Z
last_indexed 2025-12-02T15:29:08Z
_version_ 1851757487906095104
spelling rpra-journalorgua-article-14762025-09-16T09:25:48Z EFFECT OF SILVER NANOPARTICLES ON ENERGY TRANSFER EFFICIENCY IN DONOR-ACCEPTOR MIXTURES OF ORGANIC DYES: IMPROVEMENT OF ACTIVE MEDIA FOR LUMINISCENT TECHNOLOGIES ВПЛИВ НАНОЧАСТИНОК СРІБЛА НА ЕФЕКТИВНІСТЬ ПЕРЕНЕСЕННЯ ЕНЕРГІЇ В ДОНОРНО-АКЦЕПТОРНИХ СУМІШАХ ОРГАНІЧНИХ БАРВНИКІВ: УДОСКОНАЛЕННЯ АКТИВНИХ СЕРЕДОВИЩ ДЛЯ ЛЮМІНЕСЦЕНТНИХ ТЕХНОЛОГІЙ Nikolaiev, S. V. Pozhar, V. V. Dzyubenko, M. I. Nikolaiev, K. S. silver nanoparticles, plasmon resonance, dye molecules, donor-acceptor mixtures, energy transfer, plasmon-coupled resonance energy transfer наночастинка срібла; плазмонний резонанс; молекули барвників; донорно-акцепторна суміш; перенесення енергії; плазмонно-зв’язане резонансне перенесення енергії Subject and Purpose. The paper presents research into the effect of silver nanoparticles on the efficiency of excitation energy transfer in donor-acceptor mixtures of organic dyes. These mixtures make active media in luminescent solar concentrators and luminescent transformers. Our concern is to explore the possibility of boosting the excitation energy transfer in these media by adding plasmonic nanoparticles. The discussion centers on our experimental studies involving two donor-acceptor dye combinations: Coumarin 314 with Rhodamine 6G, and 3-Methoxybenzanthrone with Sulforhodamine 101, while varying acceptor dye concentrations.Methods and Methodology. The spectral-luminescent characteristics of aqueous-ethanolic solutions of both individual dyes and their mixtures are measured with and without silver nanoparticles synthesized by the citrate reduction method. Based on the spectral measurements, the energy transfer parameters for each donor-acceptor pair are calculated, and excitation en- ergy transfer efficiencies in the samples with and without nanoparticles are assessed.Results. It has been revealed that adding nanoparticles to the mixture improves the excitation energy transfer efficiency between donor-acceptor molecules, which is equivalent to increasing the critical transfer radius. It has been found that the factor causing the growth of the critical radius is independent of the concentration of acceptor dye molecules. So, the efficiency of excitation energy transfer in the examined nanocomposites is governed, first of all, by the interaction between donor molecules and plasmons of nanoparticles.Conclusions. Adding plasmonic nanoparticles to multicomponent dye-based active media enhances the efficiency of excitation energy transfer between molecules of donor-acceptor pairs. This enhancement occurs because localized surface plasmons provide an additional channel of energy transfer. The main factor to improve this energy transfer efficiency is the donor-plasmon interaction. Consequently, the development of nanocomposite media can be optimized through appropriate combinations of dyes and nanoparticles.Keywords: silver nanoparticles, plasmon resonance, dye molecules, donor-acceptor mixtures, energy transfer, plasmon-coupled resonance energy transferManuscript submitted 13.02.2025Radio phys. radio astron. 2025, 30(3): 193-201REFERENCES    1. Van Sark, W.G.J.H.M., Barnham, K.W.J., Slooff, L.H., Chatten, A.J., Büchtemann, A., Meyer, A., McCormack, S.J., Koole, R., Farrell, D.J., Bose, R., Bende, E., Burgers, A.R., Budel, T., Quilitz, Ja., Kennedy, M., Meyer, T., De Mello Donegá, C., Meijerink, A., Vanmaekelbergh, D., 2008. Luminescent Solar Concentrators — A review of recent results. Opt. Express, 16(26), pp. 21773—21792. DOI: https://doi.org/10.1364/OE.16.021773    2. Kulish, M.R., Kostylyov, V.P., Sachenko, A.V., Sokolovskyi, I.O., Khomenko, D.V., Shkrebtii, A.I. 2016. Luminescent con- verter of solar light into electrical energy. Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO), 19(3), pp. 229—247. DOI: https://doi.org/10.15407/spqeo19.03.229    3. Jo, K., Kim, H.J. 2021. Review of the Fundamental Principles and Performances on Lminescent Solar Concentrators. Appl. Sci. Converg. Technol., 30(1), pp. 14—20. DOI: https://doi.org/10.5757/ASCT.2021.30.1.14    4. Sibinski, M. 2023. Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Applications. Materials, 16, pp. 3112—3132. DOI: https://doi.org/10.3390/ma16083112    5. Bailey, S.T., Lokey, G.E., Hanes, M.S., Shearer, J.D.M., McLafferty, J.B., Beaumont, G.T., Baseler,T., Layhue, J.M., Broussard, D.R., Zhang, Y.Z., Wittmershaus, B.P., 2006. Optimized excitation energy transfer in a three-dye luminescent solar concen- trator. Sol. Energy Mater. Sol. Cells, 91(1), pp. 67—75. DOI: https://doi.org/10.1016/j.solmat.2006.07.011    6. Balaban, B., Doshay, S., Osborn, M., Rodriguez, Y., and Carter, S.A., 2014. The role of FRET in solar concentrator efficiency and color tunability. J. Luminesc., 146, pp. 256—262. DOI: https://doi.org/10.1016/j.jlumin.2013.09.049    7. Delgado-Sanchez, J.-M., Lillo-Bravo, I., Menéndez-Velázquez, A., 2021. Enhanced luminescent solar concentrator effi- ciency by Föster resonance energy transfer in a tunable six-dye absorber. Int. J. Energy Res., 45, pp. 11294—11304. DOI: https://doi.org/10.1002/er.6533    8. Zhang, B., Lyu, G., Kelly, E.A., Evans, R.C., 2022. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. Adv. Sci., 9(23). DOI: https://doi.org/10.1002/advs.202201160    9. Castelletto, S., Boretti, A., 2023. Luminescence solar concentrators: a technology update. Nano Energy, 109. 108269. DOI: https://doi.org/10.1016/j.nanoen.2023.108269    10. Föster, T., 1948. Intermolecular energy migration and fluorescence. Ann. Phys., 2, pp. 55—75.    11. Lakowicz, J.R., 2006. Principles of fluorescence spectroscopy. Springer eBooks. DOI: https://doi.org/10.1007/978-0-387-46312-4    12. Reil, F., Hohenester, U., Krenn J. R., Leitne, A., 2008. Förster-Type Resonant Energy Transfer Influenced by Metal Nanopar- ticles. Nano Lett., 8(12), pp. 4128—4133. DOI: https://doi.org/10.1021/nl801480m    13. Bobbara, S.R., 2011. Energy transfer between molecules in the vicinity of metal nanoparticle. dissertation. PhD thesis ed. Queen’s University. Available at: https://central.bac-lac.gc.ca/.item?id=TC-OKQ-6593&op=pdf&app=Library    14. Zhang, X., Marocico, C.A., Lunz, M., Gerard, V.A., Gun’Ko, Y.K., Lesnyak, V., Gaponik, N., Susha, A.S., Rogach, A.L., and Bradley, A.L., 2014. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8(2), pp. 1273—1283. DOI: https://doi.org/10.1021/nn406530m    15. Steele, J.M., Ramnarace, C.M., Farner, W.R., 2017. Surface plasmon enhanced FRET. In: Optical Sensing, Imaging, and Pho- ton Counting: Nanostructured Devices and Applications 2017: Proc. Vol. 10353. Event: SPIE Nanoscience + Engineering, 2017, San Diego, California, United States. DOI: https://doi.org/10.1117/12.2274218    16. Ding, W., Hsu, L.Y., Heaps, C.W., and Schatz, G.C., 2018. Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. J. Phys. Chem. C., 122(39), pp. 22650—22659. DOI: https://doi.org/10.1021/acs.jpcc.8b07210    17. Kaur, A., Kaur, P., Ahuja, S., 2020. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods. 12, pp. 5532—5550. DOI: https://doi.org/10.1039/D0AY01961E    18. He, Z., Li, F., Zuo, P., Tian, H., 2023. Principles and Applications of Resonance Energy Transfer      Involving Noble Metallic Nanoparticles. Materials, 16(8), 3083. DOI: https://doi.org/10.3390/ma16083083    19. Krasovitsky, B.M., Bolotin, B.M., 1976. Organic luminophores. L.: Chemistry Publ.    20. Nickolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nickolaev, K.S., 2019. Solid active media for tunable lasers based on dye- doped polyurethanes. Telecommunications and Radio Engineering, 78(8), pp. 725—741. DOI: https://doi.org/10.1615/TelecomRadEng.v78.i8.80    21. Nikolaev, S.V., Pozhar, V.V., Dzyubenko, M.I., Nikolaev, K.S., 2018. Dependence of fluorescent characteristics of nanocom- posites on the basis of dye molecules and silver nanoparticles on the optical density of components. Telecommunications and Radio Engineering, 77(19), pp. 1675—1683. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i19.10    22. Andreev, A.N., Lazarenko, A.G., 2013. Measurement of particle dimensions in colloidal solutions using the correlation spectroscopy technique. Telecommunications and Radio Engineering, 73(18), pp. 1671—1678. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i18.60    23. Geddes, C.D.,  Lakowicz,  J.R., 2002.  Metal-Enhanced  Fluorescence. J. Fluoresc., 12(2),  pp. 121—129. DOI:  https://doi.org/10.1023/A:1016875709579 Предмет і мета роботи. Предметом дослідження є вивчення впливу наночастинок срібла на ефективність перенесення енергії збудження в донорно-акцепторних сумішах органічних барвників, які можуть використовуватись при створенні активних середовищ для люмінесцентних сонячних концентраторів і люмінесцентних трансформаторів. Мета роботи полягала у вивченні можливості підвищення ефективності перенесення енергії в таких середовищах шляхом введення плазмонних наночастинок. З цією метою було експериментально досліджено вплив наночастинок срібла на підвищення ефективності перенесення енергії збудження в донорно-акцепторних сумішах барвників Кумарину 314 з Родаміном 6G та 3-Метоксібензантрону з Сульфородаміном 101 з різною концентрацією акцепторних барвників.Методи та методологія. Дослідження проводилися шляхом вимірювання спектрально-люмінесцентних характеристик водно-етанольних розчинів окремих барвників і їх сумішей, як з додаванням наночастинок, так і без них. Наночастинки срібла були синтезовані методом цитратного відновлення. За результатами спектральних вимірювань розраховано параметри перенесення для кожної з донорно-акцепторних пар і здійснено оцінку ефективності перенесення енергії збудження в зразках за наявності та за відсутності наночастинок.Результати. Виявлено  підвищення  ефективності  перенесення  енергії  збудження між  молекулами  донорно-акцепторних пар при додаванні в суміші наночастинок, що еквівалентно зростанню критичного радіуса перенесення. Установлено, що коефіцієнт зростання критичного радіуса не залежить від концентрації молекул акцепторних барвників. Це вказує на те, що в досліджених нанокомпозитах ефективність перенесення енергії збудження головним чином визначається взаємодією молекул донорів з плазмонами наночастинок.Висновок. Додавання плазмонних наночастинок до багатокомпонентних активних середовищ на барвниках сприяє підвищенню ефективності перенесення енергії збудження між молекулами донорно-акцепторних пар унаслідок виникнення додаткового каналу перенесення енергії за участю локалізованих поверхневих плазмонів. Головним чинником у зростанні ефективності перенесення є донорно-плазмонна взаємодія, тому для створення нано- композитних середовищ слід підбирати відповідні сполучення барвників і наночастинок.Ключові слова: наночастинка срібла; плазмонний резонанс; молекули барвників; донорно-акцепторна суміш; перенесення енергії; плазмонно-зв’язане  резонансне перенесення енергіїСтаття надійшла до редакції 13.02.2025Radio phys. radio astron. 2025, 30(3): 193-201БІБЛІОГРАФІЧНИЙ СПИСОК    1. Van Sark W.G.J.H.M., Barnham K.W.J., Slooff L.H., Chatten A.J., Büchtemann A., Meyer A., McCormack S.J., Koole R., Farrell D.J., Bose R., Bende E., Burgers A.R., Budel T., Quilitz Ja., Kennedy M., Meyer T., De Mello Donegá C., Meijerink A., Vanmaekelbergh D. Luminescent Solar Concentrators — A review of recent results. Opt. Express. 2008. Vol. 16, Iss. 26. P. 21773—21792. DOI: 10.1364/oe.16.021773    2. Kulish M.R., Kostylyov V.P., Sachenko A.V., Sokolovskyi I.O., Khomenko D.V., Shkrebtii A.I. Luminescent converter of solar light into electrical energy. Semiconductor Physics, Quantum Electronics & Optoelectronics (SPQEO). 2016. Vol. 19, N 3. P. 229—247. DOI: 10.15407/spqeo19.03.229    3. Jo K., Kim H.J. Review of the Fundamental Principles and Performances on Lminescent Solar Concentrators. Appl. Sci. Converg. Technol. 2021. Vol. 30, Iss. 1. P. 14—20. DOI: 10.5757/asct.2021.30.1.14    4. Sibinski M. Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Appli- cations. Materials. 2023. Vol. 16. P. 3112—3132. DOI: 10.3390/ma16083112    5. Bailey S.T., Lokey G.E., Hanes M.S., Shearer J.D.M., McLafferty J.B., Beaumont G.T., Baseler T., Layhue J.M., Broussard D.R., Zhang Y.Z., Wittmershaus B.P. Optimized excitation energy transfer in a three-dye luminescent solar concentrator. Sol. Energy Mater. Sol. Cells. 2006. Vol. 91, Iss. 1. P. 67—75. DOI: 10.1016/j.solmat.2006.07.011    6. Balaban B., Doshay S., Osborn M., Rodriguez Y., and Carter S.A. The role of FRET in solar concentrator efficiency and color tunability. J. Lumin. 2014. Vol. 146. P. 256—262. DOI: 10.1016/j.jlumin.2013.09.049    7. Delgado-Sanchez J.-M., Lillo-Bravo I., Menéndez-Velázquez A. Enhanced luminescent solar concentrator efficiency by Föster resonance energy transfer in a tunable six-dye absorber. Int. J. Energy Res. 2021. Vol. 45. P. 11294—11304. DOI: 10.1002/er.653    8. Zhang B., Lyu G., Kelly E.A, Evans R.C. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. Adv. Sci.2022. Vol. 9, Iss. 23. DOI: 10.1002/advs.202201160    9. Castelletto S., Boretti A. Luminescence solar concentrators: a technology update. Nano Energy. 2023. Vol. 109. 108269. DOI: 10.1016/j.nanoen.2023.108269    10. Föster T. Intermolecular energy migration and fluorescence. Ann. Phys. 1948. Vol. 2. P. 55—75.    11. Lakowicz J.R. Principles of fluorescence spectroscopy. Springer eBooks. 2006. DOI: 10.1007/978-0-387-46312-4    12. Reil F., Hohenester U., Krenn J.R., Leitne A. Förster-Type Resonant Energy Transfer Influenced by Metal Nanoparticles.Nano Lett. 2008. Vol. 8, Iss. 12. P. 4128—4133. DOI: 10.1021/nl801480m    13. Bobbara S.R. 2011. Energy transfer between molecules in the vicinity of metal nanoparticle. PhD thesis ed. Queen’s Univer- sity. Available at: https://central.bac-lac.gc.ca/.item?id=TC-OKQ-6593&op=pdf&app=Library    14. Zhang X., Marocico C.A., Lunz M., Gerard V.A., Gun’Ko Y.K., Lesnyak V., Gaponik N., Susha A.S., Rogach A.L., and Bradley A.L. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano. 2014. Vol. 8, Iss. 2. P. 1273—1283. DOI: 10.1021/nn406530m    15. Steele J.M., Ramnarace C.M., Farner W.R. 2017. Surface plasmon enhanced FRET. Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications 2017: Proc. Vol. 10353. Event: SPIE Nanoscience + Engineering, 2017, San Diego, California, United States. DOI: 10.1117/12.2274218    16. Ding W., Hsu L.Y., Heaps C.W., and Schatz G.C. Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. J. Phys. Chem. C. 2018. Vol. 122, Iss. 39. P. 22650—22659. DOI: 10.1021/acs. jpcc.8b07210    17. Kaur A., Kaur P., Ahuja S. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods. 2020. Vol. 12. P. 5532—5550. DOI: 10.1039/d0ay01961e    18. He Z., Li F., Zuo P., Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanopar- ticles. Materials. 2023. Vol. 16, Iss. 8. 3083. DOI: 10.3390/ma16083083    19. Krasovitsky B.M., Bolotin B.M. Organic luminophores. L.: Chemistry Publ., 1976. 344 p.    20. Nickolaev S.V., Pozhar V.V., Dzyubenko M.I., Nickolaev K.S. Solid active media for tunable lasers based on dye-doped polyurethanes. Telecommunications and Radio Engineering. 2019. Vol. 78, Iss. 8. P. 725—741. DOI: 10.1615/TelecomRa- dEng.v78.i8.80    21. Nikolaev S.V., Pozhar V.V., Dzyubenko M.I., Nikolaev K.S. Dependence of fluorescent characteristics of nanocomposites on the basis of dye molecules and silver nanoparticles on the optical density of components. Telecommunications and Radio Engineering. 2018. Vol. 77, Iss. 19. P. 1675—1683. DOI:     10.1615/TelecomRadEng.v77.i19.10    22. Andreev A.N., Lazarenko A.G. Measurement of particle dimensions in colloidal solutions using the correlation spectros- copy technique. Telecommunications  and Radio Engineering. 2013. Vol. 73, Iss. 18. P. 1671—1678. DOI: 10.1615/Telecom- RadEng.v73.i18.60    23. Geddes C.D., Lakowicz J.R. Metal-Enhanced Fluorescence. J. Fluoresc. 2002. Vol. 12, Iss. 2. P. 121—129. DOI: 10.1023/ A:101687570957 Видавничий дім «Академперіодика» 2025-09-11 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1476 10.15407/rpra30.03.193 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 3 (2025); 193 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 3 (2025); 193 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 3 (2025); 193 2415-7007 1027-9636 10.15407/rpra30.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1476/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY