IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE
Subject and Purpose. This work examines eff ects of the November 3, 2013 solar eclipse, in particular the atypical increases in the level of radio interference and scintillations of the radio sources 3C 123 and Cas-A that were observed at 25 MHz. These phenomena might owe to the enhanced wave activi...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Видавничий дім «Академперіодика»
2025
|
| Теми: | |
| Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1480 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1480 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2025-12-17T12:04:10Z |
| collection |
OJS |
| language |
English |
| topic |
radio scintillations ionosphere ionospheric storm geomagnetic storm solar eclipse manifestations in the ionosphere decameter-wavelength radio astronomy |
| spellingShingle |
radio scintillations ionosphere ionospheric storm geomagnetic storm solar eclipse manifestations in the ionosphere decameter-wavelength radio astronomy Sukharev, A. L. Ryabov, M. I. Galanin, V. V. Zabora, D. A. IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| topic_facet |
radio scintillations ionosphere ionospheric storm geomagnetic storm solar eclipse manifestations in the ionosphere decameter-wavelength radio astronomy радіомерехтіння іоносфера іоносферна буря геомагнітна буря прояви сонячного затемнення в іоносфері декаметрова радіоастрономія |
| format |
Article |
| author |
Sukharev, A. L. Ryabov, M. I. Galanin, V. V. Zabora, D. A. |
| author_facet |
Sukharev, A. L. Ryabov, M. I. Galanin, V. V. Zabora, D. A. |
| author_sort |
Sukharev, A. L. |
| title |
IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| title_short |
IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| title_full |
IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| title_fullStr |
IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| title_full_unstemmed |
IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE |
| title_sort |
impact of the november 3, 2013 solar eclipse on the state of the ionosphere as investigated in a radio astronomical technique |
| title_alt |
ВПЛИВ СОНЯЧНОГО ЗАТЕМНЕННЯ 3 ЛИСТОПАДА 2013 РОКУ НА СТАН ІОНОСФЕРИ, ДОСЛІДЖЕНИЙ ЗА ДОПОМОГОЮ РАДІОАСТРОНОМІЧНОГО МЕТОДУ |
| description |
Subject and Purpose. This work examines eff ects of the November 3, 2013 solar eclipse, in particular the atypical increases in the level of radio interference and scintillations of the radio sources 3C 123 and Cas-A that were observed at 25 MHz. These phenomena might owe to the enhanced wave activity in the ionosphere during the eclipse and a reduced radio wave absorption.Methods and Methodology. The observations were conducted with the use of the low-frequency radio telescope URAN-4 (operative range 10—30 MHz). The observational data concerning radiation from cosmic radio sources and the accompanying interference are presented, for further analysis, in the form of time series. Wavelet analysis has been applied to the data arrays to identify the dominant periods of radio source scintillation.Results. A significant increase in interference intensity was observed on the day of the eclipse climax, as well as the next day. The radio source Cas-A exhibited quasi-periodic variations of intensity on a timescale of 3 to 7 minutes. The scintillation analysis performed for the source 3C 123 before and aft er the eclipse failed to provide conclusive evidence of eclipse-related effects.Conclusions. Despite the fact that the solar eclipse of November 3, 2013, was not optically visible in Ukraine (because the nearest visibility zone for the partial eclipse lay farther toward the South of the Crimea and further on toward Turkey), an anomalous rise in the level of interference was still recorded over the time window of observations from October 31 to November 7, 2013. No similar enhancements were observed either before or after the eclipse. This is likely the result of a combined effect involving reduced absorption in the ionospheric D-layer, the noticeable shift in the F-layer’s location (which leads to appearance of distant reflections), and appearance of active agents like TIDs. All of these together brought forth a sharp increase in interference levels at 25 MHz. Despite the fact that the eclipse stayed optically invisible, its generated ionospheric disturbances proved capable of reaching theURAN-4 facility, manifesting themselves through a strong burst of interference during zenith-oriented reception.Keywords: radio scintillations, ionosphere, ionospheric storm, geomagnetic storm, solar eclipse manifestations in the ionosphere, decameter-wavelength radio astronomyManuscript submitted 25.02.2025Radio phys. radio astron. 2025, 30(4): 217-231REFERENCES1. Galanin, V.V., Komendant, V.H., Yasinski, V.V., 2021. Observation control device for the Uran-4 decameter radio telescope. Odessa Astronomical Publscations, 34, pp. 74—75. DOI: https://doi.org/10.18524/1810-4215.2021.34.2443822. Chernogor, L.F., 2013. Physical effects of solar eclipses in atmosphere and geospace. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ. 480 p.3. Lion, E.F., Bridge, H.S., Binsack, J.H., 1967. Explorer-35 Plasma Measurements in Vicinity of the Moon. J. Geophys. Res., 72(23), pp. 6113—6117. DOI: https://doi.org/10.1029/JZ072i023p061134. Ness, N.F., 1970. Interaction of the Solar Wind with the Moon. Preprint NASA-GSFC, X-692 70-141, Maryland5. Interaction of the Solar Wind with the Terrestrial Planets. Section: The Solar Wind in the Near-Earth Environment. Studies of the Solar Wind Flow around the Moon. 1988. Adv. Sci. Technol. Ser. Astronomy, 35.6. Chernogor, L.F., Barabash, V.V., 2011. The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: some results of vertical sounding. Kosm. nauka tehnol., 17(4), pp. 41—52. DOI: https://doi.org/10.15407/knit2011.04.0417. Typinski, D., Greenman, W., 2015. Things That Go Hump in the Night — A Fun Experiment [pdf]. NASA RadioJove Project. Available from: https://radiojove.gsfc.nasa.gov/radio_telescope/observing/observing_galactic_bkg.pdf8. Mertsch, P., Sarkar, S., 2013. Loops and spurs: the angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys., 06, 041. DOI: https://doi.org/10.1088/1475-7516/2013/06/0419. Rapoport, Yu.G., Cheremnykh, O.K., Koshovyy, V.V, Melnik, M.O., Ivantyshyn, O.L., Nogach, R.T., Selivanov, Yu.A., Grimalsky, V.V., Mezentsev, V.P., Karataeva, L.M., Ivchenko, V.M., Milinevsky, G.P., Fedun, V.N., Tkachenko, Ye.N., 2017, Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Ann. Geophys., 35(1), pp. 53—70. DOI: https://doi.org/10.5194/angeo-35-53-201710. Galanin, V.V., Inyutin, G.A., Kvasha, I.M., Panishko, S.K., Pisarenko, Ya.V., Rashkovskij, S.L., Ryabov, M.I., Serokurova, N.G., Tsesevich, V.P., Sharykin, N.K., 1989. URAN-4 radio telescope as an element of VLBI system. Kinematika i FizikaNebesnykh Tel, 5, pp. 87—90.11. Lytvynenko, O.A., Panishko, S.K., Derevyagin, V.G., 2023. The Long-Term Observations of the Power Cosmic Radio Sources on the Radio Telescope URAN-4 at the Decameter Wave Range. Odessa Astronomical Publications, 36, pp. 118—121. DOI: https://doi.org/10.18524/1810-4215.2023.36.29013912. Sukharev, A., Orlyuk, M., Ryabov, M., Sobitniak, L., Bezrukovs, V., Panishko, S., Romenets, A., 2022. Results of comparison of fast variations of geomagnetic field and ionospheric scintillations of 3C 144 radio source in the area of Odessa geomagnetic anomaly. Astron. Astrophys. Trans., 33(1), pp. 67—88. DOI: https://doi.org/10.17184/eac.648113. Madden, H.H., 1978. Comments on the Savitzky-Golay convolution method for least-squares-fi t smoothing and differentiation of digital data. Anal. Chem., 50(9), pp. 1383—1386. DOI: https://doi.org/10.1021/ac50031a04814. Breaz, N., 2004. The cross-validation method in the smoothing spline regression. Acta Universitatis Apulensis 7. Research Gate. Available from: https://www.researchgate.net/publication/237262065_THE_CROSS-VALIDATION_METHOD_IN_THE_SMOOTHING_SPLINE_REGRESSION15. Garimella, R.V., 2017. A Simple Introduction to Moving Least Squares and Local Regression Estimation. Report number: LA-UR-17-24975. United States, DOI: https://doi.org/10.2172/136779916. Tipton, C., 2022. Basics of Fourier Analysis of Time Series Data. Johnson Matthey Technol. Rev., 66(2), pp. 169—176. DOI: https://doi.org/10.1595/205651322X1643365208597517. Popinski, W., Kosek, W., 1995. The Fourier transform band pass filter and its application for polar motion analysis. Artif. Satell., Planet. Geod., 24 (30(1)), pp. 9—25.18. Allen, J., 1977. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 25(3), pp. 235—238. DOI: https://doi.org/10.1109/TASSP.1977.116295019. Wang, Yun, He, Ping, 2023. Comparisons between fast algorithms for the continuous wavelet transform and applications in cosmology: the 1D case. RAS Tech. Instrum., 2(1), pp. 307—323. DOI: https://doi.org/10.1093/rasti/rzad02020. Scholl, S., 2021. Fourier, Gabor, Morlet or Wigner: Comparison of Time-Frequency Transforms. DOI: 10.48550/arX-iv.2101.0670721. NOAA Weekly Highlights and 27-Day Forecast. Available from: https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast; Users Guide to The Preliminary Report and Forecast of Solar Geophysical Data. Available from:https://www.swpc.noaa.gov/sites/default/files/images/u2/Usr_guide.pdf22. Esaenwi, S., Ofodum, C.N, Okere, B.I., Opara, F.E, Sigalo, F.B., Omaliko, K.C., Wali, C.B., Sigalo, M.B., Suraju, S., Eze, E.J., Okonkwo, H., Osuji, U., Omowa, E., Ogbonda, C., and Anuforom, A., 2016. The 3 November 2013 partial solar eclipse: theeffect of Nigeria media popularization. Nig. J. Space Res., 14(1), 5 p.23. Patel, D.B., Kotadia, K.M., Lele, P.D., Jani, K.G., 1986. Absorption of radio waves during a solar eclipse. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 95(2), pp. 193—200. DOI: https://doi.org/10.1007/BF0287186424. Bamford, R.A., 2001. The effect of the 1999 total solar eclipse on the ionosphere. Phys. Chem. Earth (C), 26(5), pp. 373—377. DOI: https://doi.org/10.1016/S1464-1917(01)00016-225. Knížova, K.P., Mošna, Z., 2011. Acoustic-Gravity Waves in the Ionosphere during Solar Eclipse Events. In: Beghi, M.G. ed., 2011. Acoustic Waves — From Microdevices to Helioseismology. ISBN: 978-953-307-572-3, InTech. Available from: http://www.intechopen.com/books/acoustic-waves-from-microdevices-to-helioseismology/acoustic-gravity-waves-in-the-ion-osphere-during-solar-eclipse-events26. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Sol.-Terr. Phys., 70(13), pp. 1607—1616. DOI: https://doi.org/10.1016/j.jastp.2008.06.00927. Nayak, Ch., Yiğit, E., 2018. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere during 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys., 123(1), pp. 725—738. DOI: https://doi.org/10.1002/2017JA02484528. Sukharev, A.L., Ryabov, M.I., Galanin, V.V., Komendant, V.G., 2023. About research programs at the radio telescope "URAN-4" IRA NASU — monitoring of fluxes of powerful radio sources, study of the Sun’s supercorona, observations of solar eclipse. Odessa Astronomical Publications, 36, pp. 135. DOI: https://doi.org/10.18524/1810-4215.2023.36.29014329. Chernogor, L.F., 2016. Propagating waves and processes associated with the March 20, 2015 solar eclipse in the ionosphere over Europe. Kinemat. Phys. Celest. Bodies, 32(4), pp. 60—72. DOI: https://doi.org/10.3103/S088459131604002430. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Terr. Phys., 70(13), pp. 1607—1616. DOI: https://doi.org/10.1016/j.jastp.2008.06.00931. Crowley, G., Azeem, S.M.I., 2018. Extreme Ionospheric Storms and Their Effects on GPS Systems. In book: Buzulukova, N. ed., 2018. Extreme Events in Geospace. Elsevier, 2018, pp. 555—586. DOI: https://doi.org/10.1016/B978-0-12-812700-1.00023-632. Kozyreva, O., Kozlovsky, A., Pilipenko, V., Yagova, N., 2019. Ionospheric and geomagnetic Pc5 oscillations as observed by the ionosonde and magnetometer at Sodankylä. Adv. Space Res., 63(7), pp. 2052—2065. DOI: https://doi.org/10.1016/j.asr.2018.12.00433. Eisenbeis, J., 2020. Ionospheric Dynamics by GNSS total electron content observations: the effect of Solar Eclipses and the mystery of Earthquake precursors. Doctoral thesis in Earth and Environmental Sciences. Université Paris Cité, 2020. English. NNT: 2020UNIP7027. Available from: https://theses.hal.science/tel-03181359v1/file/EISENBEIS_Julian_va2.pdf34. Sun, Y.-Y., Shen, M.M., Tsai, Y.-L., Lin, C.-Y., Chou, M.-Y., Yu, T., Lin, K., Huang, Q., Wang, J., Qiu, L., Chen, C.-H, and Liu, J.-Y., 2021. Wave Steepening in Ionospheric Total Electron Density due to the 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys., 126(3), e2020JA028931. DOI: https://doi.org/10.1029/2020JA028931 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2025 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1480 |
| work_keys_str_mv |
AT sukhareval impactofthenovember32013solareclipseonthestateoftheionosphereasinvestigatedinaradioastronomicaltechnique AT ryabovmi impactofthenovember32013solareclipseonthestateoftheionosphereasinvestigatedinaradioastronomicaltechnique AT galaninvv impactofthenovember32013solareclipseonthestateoftheionosphereasinvestigatedinaradioastronomicaltechnique AT zaborada impactofthenovember32013solareclipseonthestateoftheionosphereasinvestigatedinaradioastronomicaltechnique AT sukhareval vplivsonâčnogozatemnennâ3listopada2013rokunastaníonosferidoslídženijzadopomogoûradíoastronomíčnogometodu AT ryabovmi vplivsonâčnogozatemnennâ3listopada2013rokunastaníonosferidoslídženijzadopomogoûradíoastronomíčnogometodu AT galaninvv vplivsonâčnogozatemnennâ3listopada2013rokunastaníonosferidoslídženijzadopomogoûradíoastronomíčnogometodu AT zaborada vplivsonâčnogozatemnennâ3listopada2013rokunastaníonosferidoslídženijzadopomogoûradíoastronomíčnogometodu |
| first_indexed |
2025-12-17T12:03:47Z |
| last_indexed |
2025-12-17T12:12:36Z |
| _version_ |
1851759305709060096 |
| spelling |
rpra-journalorgua-article-14802025-12-17T12:04:10Z IMPACT OF THE NOVEMBER 3, 2013 SOLAR ECLIPSE ON THE STATE OF THE IONOSPHERE AS INVESTIGATED IN A RADIO ASTRONOMICAL TECHNIQUE ВПЛИВ СОНЯЧНОГО ЗАТЕМНЕННЯ 3 ЛИСТОПАДА 2013 РОКУ НА СТАН ІОНОСФЕРИ, ДОСЛІДЖЕНИЙ ЗА ДОПОМОГОЮ РАДІОАСТРОНОМІЧНОГО МЕТОДУ Sukharev, A. L. Ryabov, M. I. Galanin, V. V. Zabora, D. A. radio scintillations; ionosphere; ionospheric storm; geomagnetic storm; solar eclipse manifestations in the ionosphere; decameter-wavelength radio astronomy радіомерехтіння; іоносфера; іоносферна буря; геомагнітна буря; прояви сонячного затемнення в іоносфері; декаметрова радіоастрономія Subject and Purpose. This work examines eff ects of the November 3, 2013 solar eclipse, in particular the atypical increases in the level of radio interference and scintillations of the radio sources 3C 123 and Cas-A that were observed at 25 MHz. These phenomena might owe to the enhanced wave activity in the ionosphere during the eclipse and a reduced radio wave absorption.Methods and Methodology. The observations were conducted with the use of the low-frequency radio telescope URAN-4 (operative range 10—30 MHz). The observational data concerning radiation from cosmic radio sources and the accompanying interference are presented, for further analysis, in the form of time series. Wavelet analysis has been applied to the data arrays to identify the dominant periods of radio source scintillation.Results. A significant increase in interference intensity was observed on the day of the eclipse climax, as well as the next day. The radio source Cas-A exhibited quasi-periodic variations of intensity on a timescale of 3 to 7 minutes. The scintillation analysis performed for the source 3C 123 before and aft er the eclipse failed to provide conclusive evidence of eclipse-related effects.Conclusions. Despite the fact that the solar eclipse of November 3, 2013, was not optically visible in Ukraine (because the nearest visibility zone for the partial eclipse lay farther toward the South of the Crimea and further on toward Turkey), an anomalous rise in the level of interference was still recorded over the time window of observations from October 31 to November 7, 2013. No similar enhancements were observed either before or after the eclipse. This is likely the result of a combined effect involving reduced absorption in the ionospheric D-layer, the noticeable shift in the F-layer’s location (which leads to appearance of distant reflections), and appearance of active agents like TIDs. All of these together brought forth a sharp increase in interference levels at 25 MHz. Despite the fact that the eclipse stayed optically invisible, its generated ionospheric disturbances proved capable of reaching theURAN-4 facility, manifesting themselves through a strong burst of interference during zenith-oriented reception.Keywords: radio scintillations, ionosphere, ionospheric storm, geomagnetic storm, solar eclipse manifestations in the ionosphere, decameter-wavelength radio astronomyManuscript submitted 25.02.2025Radio phys. radio astron. 2025, 30(4): 217-231REFERENCES1. Galanin, V.V., Komendant, V.H., Yasinski, V.V., 2021. Observation control device for the Uran-4 decameter radio telescope. Odessa Astronomical Publscations, 34, pp. 74—75. DOI: https://doi.org/10.18524/1810-4215.2021.34.2443822. Chernogor, L.F., 2013. Physical effects of solar eclipses in atmosphere and geospace. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ. 480 p.3. Lion, E.F., Bridge, H.S., Binsack, J.H., 1967. Explorer-35 Plasma Measurements in Vicinity of the Moon. J. Geophys. Res., 72(23), pp. 6113—6117. DOI: https://doi.org/10.1029/JZ072i023p061134. Ness, N.F., 1970. Interaction of the Solar Wind with the Moon. Preprint NASA-GSFC, X-692 70-141, Maryland5. Interaction of the Solar Wind with the Terrestrial Planets. Section: The Solar Wind in the Near-Earth Environment. Studies of the Solar Wind Flow around the Moon. 1988. Adv. Sci. Technol. Ser. Astronomy, 35.6. Chernogor, L.F., Barabash, V.V., 2011. The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: some results of vertical sounding. Kosm. nauka tehnol., 17(4), pp. 41—52. DOI: https://doi.org/10.15407/knit2011.04.0417. Typinski, D., Greenman, W., 2015. Things That Go Hump in the Night — A Fun Experiment [pdf]. NASA RadioJove Project. Available from: https://radiojove.gsfc.nasa.gov/radio_telescope/observing/observing_galactic_bkg.pdf8. Mertsch, P., Sarkar, S., 2013. Loops and spurs: the angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys., 06, 041. DOI: https://doi.org/10.1088/1475-7516/2013/06/0419. Rapoport, Yu.G., Cheremnykh, O.K., Koshovyy, V.V, Melnik, M.O., Ivantyshyn, O.L., Nogach, R.T., Selivanov, Yu.A., Grimalsky, V.V., Mezentsev, V.P., Karataeva, L.M., Ivchenko, V.M., Milinevsky, G.P., Fedun, V.N., Tkachenko, Ye.N., 2017, Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Ann. Geophys., 35(1), pp. 53—70. DOI: https://doi.org/10.5194/angeo-35-53-201710. Galanin, V.V., Inyutin, G.A., Kvasha, I.M., Panishko, S.K., Pisarenko, Ya.V., Rashkovskij, S.L., Ryabov, M.I., Serokurova, N.G., Tsesevich, V.P., Sharykin, N.K., 1989. URAN-4 radio telescope as an element of VLBI system. Kinematika i FizikaNebesnykh Tel, 5, pp. 87—90.11. Lytvynenko, O.A., Panishko, S.K., Derevyagin, V.G., 2023. The Long-Term Observations of the Power Cosmic Radio Sources on the Radio Telescope URAN-4 at the Decameter Wave Range. Odessa Astronomical Publications, 36, pp. 118—121. DOI: https://doi.org/10.18524/1810-4215.2023.36.29013912. Sukharev, A., Orlyuk, M., Ryabov, M., Sobitniak, L., Bezrukovs, V., Panishko, S., Romenets, A., 2022. Results of comparison of fast variations of geomagnetic field and ionospheric scintillations of 3C 144 radio source in the area of Odessa geomagnetic anomaly. Astron. Astrophys. Trans., 33(1), pp. 67—88. DOI: https://doi.org/10.17184/eac.648113. Madden, H.H., 1978. Comments on the Savitzky-Golay convolution method for least-squares-fi t smoothing and differentiation of digital data. Anal. Chem., 50(9), pp. 1383—1386. DOI: https://doi.org/10.1021/ac50031a04814. Breaz, N., 2004. The cross-validation method in the smoothing spline regression. Acta Universitatis Apulensis 7. Research Gate. Available from: https://www.researchgate.net/publication/237262065_THE_CROSS-VALIDATION_METHOD_IN_THE_SMOOTHING_SPLINE_REGRESSION15. Garimella, R.V., 2017. A Simple Introduction to Moving Least Squares and Local Regression Estimation. Report number: LA-UR-17-24975. United States, DOI: https://doi.org/10.2172/136779916. Tipton, C., 2022. Basics of Fourier Analysis of Time Series Data. Johnson Matthey Technol. Rev., 66(2), pp. 169—176. DOI: https://doi.org/10.1595/205651322X1643365208597517. Popinski, W., Kosek, W., 1995. The Fourier transform band pass filter and its application for polar motion analysis. Artif. Satell., Planet. Geod., 24 (30(1)), pp. 9—25.18. Allen, J., 1977. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 25(3), pp. 235—238. DOI: https://doi.org/10.1109/TASSP.1977.116295019. Wang, Yun, He, Ping, 2023. Comparisons between fast algorithms for the continuous wavelet transform and applications in cosmology: the 1D case. RAS Tech. Instrum., 2(1), pp. 307—323. DOI: https://doi.org/10.1093/rasti/rzad02020. Scholl, S., 2021. Fourier, Gabor, Morlet or Wigner: Comparison of Time-Frequency Transforms. DOI: 10.48550/arX-iv.2101.0670721. NOAA Weekly Highlights and 27-Day Forecast. Available from: https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast; Users Guide to The Preliminary Report and Forecast of Solar Geophysical Data. Available from:https://www.swpc.noaa.gov/sites/default/files/images/u2/Usr_guide.pdf22. Esaenwi, S., Ofodum, C.N, Okere, B.I., Opara, F.E, Sigalo, F.B., Omaliko, K.C., Wali, C.B., Sigalo, M.B., Suraju, S., Eze, E.J., Okonkwo, H., Osuji, U., Omowa, E., Ogbonda, C., and Anuforom, A., 2016. The 3 November 2013 partial solar eclipse: theeffect of Nigeria media popularization. Nig. J. Space Res., 14(1), 5 p.23. Patel, D.B., Kotadia, K.M., Lele, P.D., Jani, K.G., 1986. Absorption of radio waves during a solar eclipse. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 95(2), pp. 193—200. DOI: https://doi.org/10.1007/BF0287186424. Bamford, R.A., 2001. The effect of the 1999 total solar eclipse on the ionosphere. Phys. Chem. Earth (C), 26(5), pp. 373—377. DOI: https://doi.org/10.1016/S1464-1917(01)00016-225. Knížova, K.P., Mošna, Z., 2011. Acoustic-Gravity Waves in the Ionosphere during Solar Eclipse Events. In: Beghi, M.G. ed., 2011. Acoustic Waves — From Microdevices to Helioseismology. ISBN: 978-953-307-572-3, InTech. Available from: http://www.intechopen.com/books/acoustic-waves-from-microdevices-to-helioseismology/acoustic-gravity-waves-in-the-ion-osphere-during-solar-eclipse-events26. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Sol.-Terr. Phys., 70(13), pp. 1607—1616. DOI: https://doi.org/10.1016/j.jastp.2008.06.00927. Nayak, Ch., Yiğit, E., 2018. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere during 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys., 123(1), pp. 725—738. DOI: https://doi.org/10.1002/2017JA02484528. Sukharev, A.L., Ryabov, M.I., Galanin, V.V., Komendant, V.G., 2023. About research programs at the radio telescope "URAN-4" IRA NASU — monitoring of fluxes of powerful radio sources, study of the Sun’s supercorona, observations of solar eclipse. Odessa Astronomical Publications, 36, pp. 135. DOI: https://doi.org/10.18524/1810-4215.2023.36.29014329. Chernogor, L.F., 2016. Propagating waves and processes associated with the March 20, 2015 solar eclipse in the ionosphere over Europe. Kinemat. Phys. Celest. Bodies, 32(4), pp. 60—72. DOI: https://doi.org/10.3103/S088459131604002430. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Terr. Phys., 70(13), pp. 1607—1616. DOI: https://doi.org/10.1016/j.jastp.2008.06.00931. Crowley, G., Azeem, S.M.I., 2018. Extreme Ionospheric Storms and Their Effects on GPS Systems. In book: Buzulukova, N. ed., 2018. Extreme Events in Geospace. Elsevier, 2018, pp. 555—586. DOI: https://doi.org/10.1016/B978-0-12-812700-1.00023-632. Kozyreva, O., Kozlovsky, A., Pilipenko, V., Yagova, N., 2019. Ionospheric and geomagnetic Pc5 oscillations as observed by the ionosonde and magnetometer at Sodankylä. Adv. Space Res., 63(7), pp. 2052—2065. DOI: https://doi.org/10.1016/j.asr.2018.12.00433. Eisenbeis, J., 2020. Ionospheric Dynamics by GNSS total electron content observations: the effect of Solar Eclipses and the mystery of Earthquake precursors. Doctoral thesis in Earth and Environmental Sciences. Université Paris Cité, 2020. English. NNT: 2020UNIP7027. Available from: https://theses.hal.science/tel-03181359v1/file/EISENBEIS_Julian_va2.pdf34. Sun, Y.-Y., Shen, M.M., Tsai, Y.-L., Lin, C.-Y., Chou, M.-Y., Yu, T., Lin, K., Huang, Q., Wang, J., Qiu, L., Chen, C.-H, and Liu, J.-Y., 2021. Wave Steepening in Ionospheric Total Electron Density due to the 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys., 126(3), e2020JA028931. DOI: https://doi.org/10.1029/2020JA028931 Предмет і мета роботи. У роботі розглянуто наслідки сонячного затемнення 3 листопада 2013 року, зокрема нетипове підвищення рівня радіочастотних завад та мерехтіння радіоджерел 3С 123 та Cas-A на частоті 25 МГц. Ці явищамогли бути спричинені підвищеною хвильовою активністю іоносфери під час затемнення та зниженням рівня іоносферного поглинання радіохвиль.Методи та методологія. Спостереження випромінювання від космічних радіоджерел проводилися за допомогою низькочастотного радіотелескопа УРАН-4 (діапазон 10...30 МГц). Результати спостережень випромінювання від космічних радіоджерел та наявних у згаданому діапазоні завадових сигналів були подані у вигляді часових рядів для подальшої обробки і дослідження. Для визначення основних періодів мерехтіння радіоджерела до масивів даних було застосовано методи вейвлет-аналізу.Результати. Значне збільшення інтенсивності завад було зареєстровано у день кульмінації затемнення, а також наступного дня. У радіоджерела Cas-A спостерігалися варіації інтенсивності, близькі до квазіперіодичних, з характерною тривалістю від 3 до 7 хвилин. Аналіз мерехтінь радіоджерела 3С 123, проведений до і після затемнення, не надав достатніх даних для переконливих висновків про його вплив.Висновки. Незважаючи на те, що сонячне затемнення 3 листопада 2013 року не було оптично видимим в Україні (оскільки найближча зона видимості часткового затемнення була розташована південніше Криму та у Туреччині), все ж зареєстроване аномальне підвищення рівня завад протягом часового вікна спостережень з 31 жовтня до 7 листопада 2013 року. Подібних посилень не спостерігалося ні до, ні після затемнення. Ймовірно, це явище було результатом комбінованого ефекту, який включав зменшення поглинання в D-шарі іоносфери, зміщення розташування F-шару (що спричинює далекі віддзеркалення) та появу активних агентів, таких як TID-хвилі. Усе це разом призвело до різкого збільшення рівня завад на частоті 25 МГц. Хоча затемнення не спостерігалося оптично, згенеровані ним іоносферні збурення досягли УРАН-4 і проявилися як потужний сплеск рівня завад при прийманні із зенітного напрямку.Ключові слова: радіомерехтіння, іоносфера, іоносферна буря, геомагнітна буря, прояви сонячного затемнення в іоносфері, декаметрова радіоастрономіяСтаття надійшла до редакції 25.02.2025Radio phys. radio astron. 2025, 30(4): 217-231БІБЛІОГРАФІЧНИЙ СПИСОК 1. Galanin, V.V., Komendant, V.H., Yasinski, V.V., 2021. Observation control device for the Uran-4 decameter radio telescope. Odessa Astronomical Publscations, 34, pp. 74—75. DOI: 10.18524/1810-4215.2021.34.2443822. Chernogor, L.F., 2013. Physical effects of solar eclipses in atmosphere and geospace. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ. 480 p.3. Lion, E.F., Bridge, H.S., Binsack, J.H., 1967. Explorer-35 Plasma Measurements in Vicinity of the Moon. J. Geophys. Res., 72(23), pp. 6113—6117. DOI: 10.1029/JZ072i023p061134. Ness, N.F., 1970. Interaction of the Solar Wind with the Moon. Preprint NASA-GSFC, X-692 70-141, Maryland5. Interaction of the Solar Wind with the Terrestrial Planets. Section: The Solar Wind in the Near-Earth Environment. Studies of the Solar Wind Flow around the Moon. 1988. Adv. Sci. Technol. Ser. Astronomy, 35.6. Chernogor, L.F., Barabash, V.V., 2011. The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: some results of vertical sounding. Kosm. nauka tehnol., 17(4), pp. 41—52. DOI: 10.15407/knit2011.04.0417. Typinski, D., Greenman, W., 2015. Things That Go Hump in the Night — A Fun Experiment [pdf]. NASA RadioJove Project. Available from: https://radiojove.gsfc.nasa.gov/radio_telescope/observing/observing_galactic_bkg.pdf8. Mertsch, P., Sarkar, S., 2013. Loops and spurs: the angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys., 06, 041. DOI: 10.1088/1475-7516/2013/06/0419. Rapoport, Yu.G., Cheremnykh, O.K., Koshovyy, V.V, Melnik, M.O., Ivantyshyn, O.L., Nogach, R.T., Selivanov, Yu.A., Grimalsky, V.V., Mezentsev, V.P., Karataeva, L.M., Ivchenko, V.M., Milinevsky, G.P., Fedun, V.N., Tkachenko, Ye.N., 2017, Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Ann. Geophys., 35(1), pp. 53—70. DOI: 10.5194/angeo-35-53-201710. Galanin, V.V., Inyutin, G.A., Kvasha, I.M., Panishko, S.K., Pisarenko, Ya.V., Rashkovskij, S.L., Ryabov, M.I., Serokurova, N.G., Tsesevich, V.P., Sharykin, N.K., 1989. URAN-4 radio telescope as an element of VLBI system. Kinematika i FizikaNebesnykh Tel, 5, pp. 87—90.11. Lytvynenko, O.A., Panishko, S.K., Derevyagin, V.G., 2023. The Long-Term Observations of the Power Cosmic Radio Sources on the Radio Telescope URAN-4 at the Decameter Wave Range. Odessa Astronomical Publications, 36, pp. 118—121. DOI: 10.18524/1810-4215.2023.36.29013912. Sukharev, A., Orlyuk, M., Ryabov, M., Sobitniak, L., Bezrukovs, V., Panishko, S., Romenets, A., 2022. Results of comparison of fast variations of geomagnetic field and ionospheric scintillations of 3C 144 radio source in the area of Odessa geomagnetic anomaly. Astron. Astrophys. Trans., 33(1), pp. 67—88. DOI: 10.17184/eac.648113. Madden, H.H., 1978. Comments on the Savitzky-Golay convolution method for least-squares-fi t smoothing and differentiation of digital data. Anal. Chem., 50(9), pp. 1383—1386. DOI: 10.1021/ac50031a04814. Breaz, N., 2004. The cross-validation method in the smoothing spline regression. Acta Universitatis Apulensis 7. Research Gate. Available from: https://www.researchgate.net/publication/237262065_THE_CROSS-VALIDATION_METHOD_IN_THE_SMOOTHING_SPLINE_REGRESSION15. Garimella, R.V., 2017. A Simple Introduction to Moving Least Squares and Local Regression Estimation. Report number: LA-UR-17-24975. United States, DOI: 10.2172/136779916. Tipton, C., 2022. Basics of Fourier Analysis of Time Series Data. Johnson Matthey Technol. Rev., 66(2), pp. 169—176. DOI: 10.1595/205651322X1643365208597517. Popinski, W., Kosek, W., 1995. The Fourier transform band pass filter and its application for polar motion analysis. Artif. Satell., Planet. Geod., 24 (30(1)), pp. 9—25.18. Allen, J., 1977. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 25(3), pp. 235—238. DOI: 10.1109/TASSP.1977.116295019. Wang, Yun, He, Ping, 2023. Comparisons between fast algorithms for the continuous wavelet transform and applications in cosmology: the 1D case. RAS Tech. Instrum., 2(1), pp. 307—323. DOI: 10.1093/rasti/rzad02020. Scholl, S., 2021. Fourier, Gabor, Morlet or Wigner: Comparison of Time-Frequency Transforms. DOI: 10.48550/arX-iv.2101.0670721. NOAA Weekly Highlights and 27-Day Forecast. Available from: https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast; Users Guide to The Preliminary Report and Forecast of Solar Geophysical Data. Available from:https://www.swpc.noaa.gov/sites/default/files/images/u2/Usr_guide.pdf22. Esaenwi, S., Ofodum, C.N, Okere, B.I., Opara, F.E, Sigalo, F.B., Omaliko, K.C., Wali, C.B., Sigalo, M.B., Suraju, S., Eze, E.J., Okonkwo, H., Osuji, U., Omowa, E., Ogbonda, C., and Anuforom, A., 2016. The 3 November 2013 partial solar eclipse: theeffect of Nigeria media popularization. Nig. J. Space Res., 14(1), 5 p.23. Patel, D.B., Kotadia, K.M., Lele, P.D., Jani, K.G., 1986. Absorption of radio waves during a solar eclipse. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 95(2), pp. 193—200. DOI: 10.1007/bf0287186424. Bamford, R.A., 2001. The effect of the 1999 total solar eclipse on the ionosphere. Phys. Chem. Earth (C), 26(5), pp. 373—377. DOI: 10.1016/S1464-1917(01)00016-225. Knížova, K.P., Mošna, Z., 2011. Acoustic-Gravity Waves in the Ionosphere during Solar Eclipse Events. In: Beghi, M.G. ed., 2011. Acoustic Waves — From Microdevices to Helioseismology. ISBN: 978-953-307-572-3, InTech. Available from: http://www.intechopen.com/books/acoustic-waves-from-microdevices-to-helioseismology/acoustic-gravity-waves-in-the-ion-osphere-during-solar-eclipse-events26. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Sol.-Terr. Phys., 70(13), pp. 1607—1616. DOI: 10.1016/j.jastp.2008.06.00927. Nayak, Ch., Yiğit, E., 2018. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere during 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys., 123(1), pp. 725—738. DOI: 10.1002/2017JA02484528. Sukharev, A.L., Ryabov, M.I., Galanin, V.V., Komendant, V.G., 2023. About research programs at the radio telescope "URAN-4" IRA NASU — monitoring of fluxes of powerful radio sources, study of the Sun’s supercorona, observations ofsolar eclipse. Odessa Astronomical Publications, 36, pp. 135. DOI: 10.18524/1810-4215.2023.36.29014329. Chernogor, L.F., 2016. Propagating waves and processes associated with the March 20, 2015 solar eclipse in the ionosphere over Europe. Kinemat. Phys. Celest. Bodies, 32(4), pp. 60—72.30. Kaladze, T.D., Pokhotelov, O.A., Shah, H.A., Khan, M.I., Stenflo, L., 2008. Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Terr. Phys., 70(13), pp. 1607—1616. DOI: 10.1016/j.jastp.2008.06.00931. Crowley, G., Azeem, S.M.I., 2018. Extreme Ionospheric Storms and Their Effects on GPS Systems. In book: Buzulukova, N. ed., 2018. Extreme Events in Geospace. Elsevier, 2018, pp. 555—586. DOI: 10.1016/B978-0-12-812700-1.00023-632. Kozyreva, O., Kozlovsky, A., Pilipenko, V., Yagova, N., 2019. Ionospheric and geomagnetic Pc5 oscillations as observed by the ionosonde and magnetometer at Sodankylä. Adv. Space Res., 63(7), pp. 2052—2065. DOI: 10.1016/j.asr.2018.12.00433. Eisenbeis, J., 2020. Ionospheric Dynamics by GNSS total electron content observations: the effect of Solar Eclipses and the mystery of Earthquake precursors. Doctoral thesis in Earth and Environmental Sciences. Université Paris Cité, 2020. English. NNT: 2020UNIP7027. Available from: https://theses.hal.science/tel-03181359v1/file/EISENBEIS_Julian_va2.pdf34. Sun, Y.-Y., Shen, M.M., Tsai, Y.-L., Lin, C.-Y., Chou, M.-Y., Yu, T., Lin, K., Huang, Q., Wang, J., Qiu, L., Chen, C.-H, and Liu, J.-Y., 2021. Wave Steepening in Ionospheric Total Electron Density due to the 21 August 2017 Total Solar Eclipse.J. Geophys. Res. Space Phys., 126(3), e2020JA028931. DOI: 10.1029/2020JA028931 Видавничий дім «Академперіодика» 2025-12-08 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1480 10.15407/rpra30.04.217 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 4 (2025); 217 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 4 (2025); 217 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 4 (2025); 217 2415-7007 1027-9636 10.15407/rpra30.04 en http://rpra-journal.org.ua/index.php/ra/article/view/1480/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY |