LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS
Subject and Purpose. The ionosphere is the main channel for the propagation of radio waves. Its condition is determined bythe state of the atmospheric and space weathers, both of which depend on processes on the Sun, in the geospace, and in the Earth’s atmosphere. A serious impact on the state of th...
Saved in:
| Date: | 2025 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Видавничий дім «Академперіодика»
2025
|
| Subjects: | |
| Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/1481 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1481 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2025-12-17T12:21:15Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
rocket flight large-scale disturbance ionosphere aperiodic and quasiperiodic disturbance electron density |
| spellingShingle |
rocket flight large-scale disturbance ionosphere aperiodic and quasiperiodic disturbance electron density Chernogor, L. F. LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| topic_facet |
rocket flight large-scale disturbance ionosphere aperiodic and quasiperiodic disturbance electron density політ ракети великомасштабне збурення іоносфера аперіодичне та квазіперіодичне збурення концентрація електронів |
| format |
Article |
| author |
Chernogor, L. F. |
| author_facet |
Chernogor, L. F. |
| author_sort |
Chernogor, L. F. |
| title |
LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| title_short |
LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| title_full |
LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| title_fullStr |
LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| title_full_unstemmed |
LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS |
| title_sort |
large-scale disturbances in the terrestrial ionosphere, which accompanied the launches and flights of powerful rockets |
| title_alt |
ВЕЛИКОМАСШТАБНІ ЗБУРЕННЯ В ІОНОСФЕРІ, ЩО СУПРОВОДЖУВАЛИ СТАРТИ ТА ПОЛЬОТИ ПОТУЖНИХ РАКЕТ |
| description |
Subject and Purpose. The ionosphere is the main channel for the propagation of radio waves. Its condition is determined bythe state of the atmospheric and space weathers, both of which depend on processes on the Sun, in the geospace, and in the Earth’s atmosphere. A serious impact on the state of the atmospheric and the space weather is produced by launches and flights of powerful rockets. The purpose of this paper is to present the results of observations and analyses of the disturbances in the ionosphere that accompanied launches and flights of heavy rockets from various cosmodromes around the world.Methods and Methodology. In order to monitor disturbances in the ionosphere, a vertical Doppler sounder was used. The radar is able to detect relative disturbances in the electron density about 10–3 to 10–2 per cent over oscillation periods of 102 to 103 s. The beat signal formed by the signal reflected from the ionosphere and the one from the local oscillator were subjected to spectral processing over time intervals of 1 min.Results. As follows from the observational data, the rocket launch from the Plesetsk cosmodrome (RF) was accompanied by an aperiodic disturbance of electron density, of duration about 20 minutes and speed of 1000 to 1140 m/s. The disturbance with a speed of 450 to 500 m/s was also aperiodic. A quasi-periodic disturbance with a period of 6 to 7 min and speed of 330 to 340 m/s was carried by a long-wave infrasound. The amplitude of the relative disturbance in electron density was δN≈ 1 percent. For atmospheric gravity waves with periods of 20 or 30 min the relative disturbance in electron density was δN≈ 6 to 14 per cent. At the start of the Proton M rocket, three groups of disturbances with speeds of 555, 240 and 170 m/s were observed. In their case, the estimate for δN is 1.5 to 3 per cent. During the rocket launch from the Wenchang (PRC) cosmodrome, three possible groups of disturbances were noted, with speeds of 560, 410 and 270 m/s. In the case of a quasiperiodic disturbance, an estimate for δN is 1.5 per cent. Th e disturbances recorded after the launch of the Falcon 9 rocket are, most likely, not related to the flight of the rocket. The aperiodic disturbances that followed the launch of the Ariane 5 rocket could be associated with the flight of the rocket.Conclusions. The disturbances that accompanied launches and flights of heavy rockets from several cosmodromes located at distances of 1500 to 2500 km from the observation site have been reliably identified.Keywords: rocket flight, large-scale disturbance, ionosphere, aperiodic and quasiperiodic disturbance, electron densityManuscript submitted 02.12.2021Radio phys. radio astron. 2025, 30(4): 232–249REFERENCES1. Booker, H.G., 1961. A local reduction of F region ionization due to missile transit. J. Geophys. Res., 66(4), pp. 1073—1079. DOI: https://doi.org/10.1029/JZ066i004p010732. Jackson, J.E., Whale, H.A., and Bauer, S.J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res., 67(5), pp. 2059—2061. DOI: https://doi.org/10.1029/JZ067i005p020593. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science, 187(4174), pp. 343—346. DOI: https://doi.org/10.1126/science.187.4174.3434. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res., 80(16), pp. 2217—2228. DOI: https://doi.org/10.1029/JA080i016p022175. Mendillo, M., 1981. The effect of rocket launches on the ionosphere. Adv. Space Res., 1(2), pp. 275—290. DOI: https://doi.org/10.1016/0273-1177(81)90302-16. Zinn, J, Sutherland, C.D., Stone, S.N., Duncan, L.M., and Behnke, R., 1982. Ionospheric eff ects of rocket exhaust products: HEAO-C and Skylab. J. Atmos. Terr. Phys., 44(12), pp. 1143—1171. DOI: https://doi.org/10.1016/0021-9169(82)90025-37. Wand, R.H., and Mendillo, M., 1984. Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res., 89(A1), pp. 203—215. DOI: https://doi.org/10.1029/JA089iA01p002038. Mendillo, M., Baumgardner, J., Allen, D.P., Foster, J., Holt, J., Ellis, G.R.A., Klekociuk, A., and Reber, G., 1987. Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science, 238(4831), pp. 1260—1264.DOI: https://doi.org/10.1126/science.238.4831.12609. Mendillo, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res., 8(1), pp. 51—62. DOI: https://doi.org/10.1016/0273-1177(88)90342-010. Bernhardt, P.A., Kashiwa, B.A., Tepley, C.A., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment Over Arecibo. I — Neutral Gas Dynamics. Astrophys. Lett. Comm., 27(3), pp. 169—181.11. Bernhardt, P., Swartz, W., Kelly, M., Sulzer, M., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment over Arecibo. II — Plasma dynamics. Astrophys. Lett. Comm., 27(3), pp. 183—198.12. Bernhardt, P.A., Ballenthin, J.O., Baumgardner, J.L., Bhatt, A., Boyd, I.D., Burt, J.M., Caton, R.G., Coster, A., Erickson, P.J., Huba, J.D., Earle, G.D., Kaplan, C.R., Foster, J.C., Groves, K.M., Haaser, R.A., Heelis, R.A., Hunton, D.E., Hysell, D.L., Klenzing, J.H., Larsen, M.F., Lind, F.D., Pedersen, T.R., Pfaff, R.F., Stoneback, R.A., Roddy, P.A., Rodriquez, S.P., San Antonio, G.S., Schuck, P.W., Siefring, C.L., Selcher, C.A., Smith, S.M., Talaat, E.R., Thomason, J.F., Tsunoda, R.T., and Varney, R.H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci., 40(5), pp. 1267—1286. DOI: https://doi.org/10.1109/TPS.2012.218581413. Gritchin, A.I., Dorohov, V.L., Kapanin, I.I., Karpachov, A.I., Kostrov, L.S., Leus, S.G., Martynenko, S.I., Mashtaler, N.N., Milovanov, Yu.B., Misyura, V.A., Pakhomova, O.V., Podnos, V.A., Pokhilko, S.N., Protopop, E.N., Rozumenko, V.T., Somov, V.G., Tyrnov, O.F., Fedorenko, V.N., Fedorenko, Yu.P., Tsymbal, A.M., Chernogor, L.F., Chulakov, S.G., Shemet, A.S., 1995. Complex radiophysical investigations of ionospheric disturbances caused by launches and flights of spacecraft. Space Plasma Physics, pp. 161—170. Kyiv: SSAU Publ.14. Chernogor, L.F., Garmash, K.P., Kostrov, L.S., Rozumenko, V.T., Tyrnov, O.F., and Tsymbal, A.M., 1998. Perturbations in the ionosphere following U.S. powerful space vehicle launching. Radio Phys. Radio Astron., 3(2), pp. 181—190.15. Kostrov, L.S., Rozumenko, V.T., and Chernogor, L.F., 1999. Doppler Radar Measurements of the Disturbances in the Bottomside Ionosphere, Associated with Space Vehicle Launches and Maneuvering System Burns. Radio Phys. Radio Astron.,4(3), pp. 227—246.16. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2003. HF doppler observations of disturbances in geospace, which accompanied space vehicle launches. Kosm. nauka tehnol., 9(Supplement2), pp. 76—81. DOI: https://doi.org/10.15407/knit2003.02s.07617. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2002. Doppler radio sounding of disturbances in the E and F regions of the ionosphere during launches and flights of spacecraft. Kosm. nauka tehnol., 8(Supplement2), pp. 132—143. DOI: https://doi.org/10.15407/knit2002.02s.13218. Burmaka, V.P., Kostrov, L.S., and Chernogor, L.F., 2004. Statistics of Signals of the HF Doppler Radar Sensing the Bottomside Ionosphere Disturbed by Rocket Launches and Solar Terminator. Telecommunications and Radio Engeneering, 61(2—6), pp. 150—177. DOI: https://doi.org/10.1615/TelecomRadEng.v61.i2.7019. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2003. Results of combined radio physical observations of wave disturbances in geospace which accompanied space vehicle launches and flights. Kosm. nauka tehnol., 9(Supplement2), pp. 57—61. DOI: https://doi.org/10.15407/knit2003.02s.05720. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Clustered-Instrument Studies of Ionospheric Wave Disturbances Accompanying Rocket Launches against the Background of Nonstationary Natural Processes. Radio Phys. Radio Astron., 9(1),pp. 5—28.21. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Radar observations of wave-like disturbances in ionosphere, associated with space vehicle flights. Space Sci. Technol., 10(5—6), pp. 113—117. DOI: https://doi.org/10.15407/knit2004.05.11322. Burmaka, V.P., Chernogor, L.F., and Tcherniak, Y.V., 2005. Geospace Wave Disturbances Accompanying "Soyuz" and "Proton" Launches and Flights. Radio Phys. Radio Astron., 10(3), pp. 254—272.23. Burmaka, V.P., and Chernogor, L.F., 2009. Complex Diagnostics of Ionospheric Plasma Disturbed by Far Rocket Launches. Radio Phys. Radio Astron., 14(1), pp. 26—44.24. Garmash, K.P., Leus, S.G., Chernogor, L.F., and Shamota, M.A., 2009. Geomagnetic pulsations associated with rocket launches from different cosmodromes of the world. Space Sci. Technol., 15(1), pp. 31—43. DOI: https://doi.org/10.15407/knit2009.01.03125. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric eff ects during rocket "Proton" flight: results of vertical sounding. Space Sci. Technol., 16(3), pp. 15—21. DOI: https://doi.org/10.15407/knit2010.03.01526. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric Effects During Flights of the Rocket "Soyuz" Under Magnetically Quiet and Magnetically Disturbed Conditions. Space Sci. Technol., 16(3), pp. 22—31. DOI: https://doi.org/10.15407/knit2010.03.02227. Zhivolup, T.G., and Chernogor, L.F., 2011. Comparative analysis of the disturbances in the ionosphere, caused by rocket launches "Proton" and "Soyuz". The Bulletin of NTU "KhPI". Radio Physics and Ionosphere, 44, pp. 18—26.28. Chernogor, L.F., and Zhivolup, T.G., 2011. Comparative analysis of ionospheric effects as observed during "Proton" rocket flights under diff erent space weather conditions. Radio Phys. Radio Astron., 3(2), pp. 139—148. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i2.6029. Kakinami, Y., Yamamoto, M., Chen, C.-H., Watanabe, S., Lin, C., Liu, J.-Y., and Habu, H, 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys., 118(8), pp. 5184—5189. DOI: https://doi.org/10.1002/jgra.5050830. Lin, C.H., Lin, J.T., Chen, C.H., Liu, J.Y., Sun, Y.Y., Kakinami, Y., Matsumura, M., Chen, W.H., Liu, H., and Rau, R.J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys., 32(9), pp. 1145—1152. DOI: https://doi.org/10.5194/angeo-32-1145-201431. Ding, F., Wan, W., Mao, T., Wang, M., Ning, B., Zhao, B., and Xiong, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett., 41(10), pp. 3351—3358. DOI: https://doi.org/10.1002/2014GL06010732. Nakashima, Y., and Heki, K., 2014. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Sci., 49(7), pp. 497—505. DOI: https://doi.org/10.1002/2014RS00541333. Chernogor, L.F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ.34. Chernogor, L.F., and Blaunstein, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, N. Y.: CRC Press. Taylor & Francis Group.35. Lin, C.C.H., Shen, M.-H., Chou, M.-Y., Chen, C.-H., Yue, J., Chen, P.-C., and Matsumura, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett., 44(15), pp. 7578—7586.DOI: https://doi.org/10.1002/2017GL07419236. Chou, M.-Y., Shen, M.-H., Lin, C.C.H., Yue, J., Chen, C.-H., Liu, J.-Y., and Lin, J.-T, 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather, 16(2), pp. 172—184. DOI: https://doi.org/10.1002/2017SW00173837. Chou, M.-Y., Lin, C.C.H., Shen, M.-H., Yue, J., Huba, J.D., and Chen, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett., 45(13), pp. 6334—6342. DOI: https://doi.org/10.1029/2018GL07808838. Li, G., Ning, B., Abdu, M.A., Wang, C., Otsuka, Y., Wan, W., Lei, J., Nishioka, M., Tsugawa, T., Hu, L., Yang, G., and Yan, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet.Sci., 5(1), 11. DOI: https://doi.org/10.1186/s40645-018-0172-y39. Ssessanga, N., Kim, Y.H., Choi, B., and Chung, J.-K., 2018. The 4D‐var estimation of North Korean rocket exhaust emissions into the ionosphere. J. Geophys. Res. Space Phys., 123(3), pp. 2315—2326. DOI: https://doi.org/10.1002/2017JA02459640. Zhu, J., Fang, H., Xia, F., Wan, T., and Tan, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys., 2019, 7935067. DOI: https://doi.org/10.1155/2019/793506741. Savastano, G., Komjathy, A., Shume, E., Vergados, P., Ravanelli, M., Verkhoglyadova, O., Meng, X., and Crespi, M., 2019. Advantages of geostationary satellites for ionospheric anomaly studies: Ionospheric plasma depletion following a rocket launch. Remote Sens., 11(14), 1734. DOI: https://doi.org/10.3390/rs1114173442. Bowden, G.W., Lorrain, P., and Brown, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys., 125(6), e2020JA027836. DOI: https://doi.org/10.1029/2020JA02783643. Saha, K., De, B. K., Paul, B., and Guha, A., 2020. Satellite launch vehicle effect on the Earth’s lower ionosphere: A case study. Adv. Space Res., 65(11), pp. 2507—2514. DOI: https://doi.org/10.1016/j.asr.2020.02.02644. Zhu, J., and Fang, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res., 65(3), pp. 933—942. DOI: https://doi.org/10.1016/j.asr.2019.10.02845. Ma, X., Fang, H., Wang, S., and Chang, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci., 56(4), e2020RS007183. DOI: https://doi.org/10.1029/2020RS00718346. Chernogor, L.F., Garmash, K.P., Podnos, V.A., and Tyrnov, O.F., 2013. Th e V.N. Karazin Kharkiv National University Radio Physical Observatory — the tool for ionosphere monitoring in space experiments. Space Project "Ionosat-Micro". Kyiv, Ukraine: Academperiodika Publ., pp. 160—182. |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2025 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1481 |
| work_keys_str_mv |
AT chernogorlf largescaledisturbancesintheterrestrialionospherewhichaccompaniedthelaunchesandflightsofpowerfulrockets AT chernogorlf velikomasštabnízburennâvíonosferíŝosuprovodžuvalistartitapolʹotipotužnihraket |
| first_indexed |
2025-12-17T12:03:47Z |
| last_indexed |
2025-12-17T12:41:29Z |
| _version_ |
1851759305586376704 |
| spelling |
rpra-journalorgua-article-14812025-12-17T12:21:15Z LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS ВЕЛИКОМАСШТАБНІ ЗБУРЕННЯ В ІОНОСФЕРІ, ЩО СУПРОВОДЖУВАЛИ СТАРТИ ТА ПОЛЬОТИ ПОТУЖНИХ РАКЕТ Chernogor, L. F. rocket flight; large-scale disturbance; ionosphere; aperiodic and quasiperiodic disturbance; electron density політ ракети; великомасштабне збурення; іоносфера; аперіодичне та квазіперіодичне збурення; концентрація електронів Subject and Purpose. The ionosphere is the main channel for the propagation of radio waves. Its condition is determined bythe state of the atmospheric and space weathers, both of which depend on processes on the Sun, in the geospace, and in the Earth’s atmosphere. A serious impact on the state of the atmospheric and the space weather is produced by launches and flights of powerful rockets. The purpose of this paper is to present the results of observations and analyses of the disturbances in the ionosphere that accompanied launches and flights of heavy rockets from various cosmodromes around the world.Methods and Methodology. In order to monitor disturbances in the ionosphere, a vertical Doppler sounder was used. The radar is able to detect relative disturbances in the electron density about 10–3 to 10–2 per cent over oscillation periods of 102 to 103 s. The beat signal formed by the signal reflected from the ionosphere and the one from the local oscillator were subjected to spectral processing over time intervals of 1 min.Results. As follows from the observational data, the rocket launch from the Plesetsk cosmodrome (RF) was accompanied by an aperiodic disturbance of electron density, of duration about 20 minutes and speed of 1000 to 1140 m/s. The disturbance with a speed of 450 to 500 m/s was also aperiodic. A quasi-periodic disturbance with a period of 6 to 7 min and speed of 330 to 340 m/s was carried by a long-wave infrasound. The amplitude of the relative disturbance in electron density was δN≈ 1 percent. For atmospheric gravity waves with periods of 20 or 30 min the relative disturbance in electron density was δN≈ 6 to 14 per cent. At the start of the Proton M rocket, three groups of disturbances with speeds of 555, 240 and 170 m/s were observed. In their case, the estimate for δN is 1.5 to 3 per cent. During the rocket launch from the Wenchang (PRC) cosmodrome, three possible groups of disturbances were noted, with speeds of 560, 410 and 270 m/s. In the case of a quasiperiodic disturbance, an estimate for δN is 1.5 per cent. Th e disturbances recorded after the launch of the Falcon 9 rocket are, most likely, not related to the flight of the rocket. The aperiodic disturbances that followed the launch of the Ariane 5 rocket could be associated with the flight of the rocket.Conclusions. The disturbances that accompanied launches and flights of heavy rockets from several cosmodromes located at distances of 1500 to 2500 km from the observation site have been reliably identified.Keywords: rocket flight, large-scale disturbance, ionosphere, aperiodic and quasiperiodic disturbance, electron densityManuscript submitted 02.12.2021Radio phys. radio astron. 2025, 30(4): 232–249REFERENCES1. Booker, H.G., 1961. A local reduction of F region ionization due to missile transit. J. Geophys. Res., 66(4), pp. 1073—1079. DOI: https://doi.org/10.1029/JZ066i004p010732. Jackson, J.E., Whale, H.A., and Bauer, S.J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res., 67(5), pp. 2059—2061. DOI: https://doi.org/10.1029/JZ067i005p020593. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science, 187(4174), pp. 343—346. DOI: https://doi.org/10.1126/science.187.4174.3434. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res., 80(16), pp. 2217—2228. DOI: https://doi.org/10.1029/JA080i016p022175. Mendillo, M., 1981. The effect of rocket launches on the ionosphere. Adv. Space Res., 1(2), pp. 275—290. DOI: https://doi.org/10.1016/0273-1177(81)90302-16. Zinn, J, Sutherland, C.D., Stone, S.N., Duncan, L.M., and Behnke, R., 1982. Ionospheric eff ects of rocket exhaust products: HEAO-C and Skylab. J. Atmos. Terr. Phys., 44(12), pp. 1143—1171. DOI: https://doi.org/10.1016/0021-9169(82)90025-37. Wand, R.H., and Mendillo, M., 1984. Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res., 89(A1), pp. 203—215. DOI: https://doi.org/10.1029/JA089iA01p002038. Mendillo, M., Baumgardner, J., Allen, D.P., Foster, J., Holt, J., Ellis, G.R.A., Klekociuk, A., and Reber, G., 1987. Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science, 238(4831), pp. 1260—1264.DOI: https://doi.org/10.1126/science.238.4831.12609. Mendillo, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res., 8(1), pp. 51—62. DOI: https://doi.org/10.1016/0273-1177(88)90342-010. Bernhardt, P.A., Kashiwa, B.A., Tepley, C.A., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment Over Arecibo. I — Neutral Gas Dynamics. Astrophys. Lett. Comm., 27(3), pp. 169—181.11. Bernhardt, P., Swartz, W., Kelly, M., Sulzer, M., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment over Arecibo. II — Plasma dynamics. Astrophys. Lett. Comm., 27(3), pp. 183—198.12. Bernhardt, P.A., Ballenthin, J.O., Baumgardner, J.L., Bhatt, A., Boyd, I.D., Burt, J.M., Caton, R.G., Coster, A., Erickson, P.J., Huba, J.D., Earle, G.D., Kaplan, C.R., Foster, J.C., Groves, K.M., Haaser, R.A., Heelis, R.A., Hunton, D.E., Hysell, D.L., Klenzing, J.H., Larsen, M.F., Lind, F.D., Pedersen, T.R., Pfaff, R.F., Stoneback, R.A., Roddy, P.A., Rodriquez, S.P., San Antonio, G.S., Schuck, P.W., Siefring, C.L., Selcher, C.A., Smith, S.M., Talaat, E.R., Thomason, J.F., Tsunoda, R.T., and Varney, R.H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci., 40(5), pp. 1267—1286. DOI: https://doi.org/10.1109/TPS.2012.218581413. Gritchin, A.I., Dorohov, V.L., Kapanin, I.I., Karpachov, A.I., Kostrov, L.S., Leus, S.G., Martynenko, S.I., Mashtaler, N.N., Milovanov, Yu.B., Misyura, V.A., Pakhomova, O.V., Podnos, V.A., Pokhilko, S.N., Protopop, E.N., Rozumenko, V.T., Somov, V.G., Tyrnov, O.F., Fedorenko, V.N., Fedorenko, Yu.P., Tsymbal, A.M., Chernogor, L.F., Chulakov, S.G., Shemet, A.S., 1995. Complex radiophysical investigations of ionospheric disturbances caused by launches and flights of spacecraft. Space Plasma Physics, pp. 161—170. Kyiv: SSAU Publ.14. Chernogor, L.F., Garmash, K.P., Kostrov, L.S., Rozumenko, V.T., Tyrnov, O.F., and Tsymbal, A.M., 1998. Perturbations in the ionosphere following U.S. powerful space vehicle launching. Radio Phys. Radio Astron., 3(2), pp. 181—190.15. Kostrov, L.S., Rozumenko, V.T., and Chernogor, L.F., 1999. Doppler Radar Measurements of the Disturbances in the Bottomside Ionosphere, Associated with Space Vehicle Launches and Maneuvering System Burns. Radio Phys. Radio Astron.,4(3), pp. 227—246.16. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2003. HF doppler observations of disturbances in geospace, which accompanied space vehicle launches. Kosm. nauka tehnol., 9(Supplement2), pp. 76—81. DOI: https://doi.org/10.15407/knit2003.02s.07617. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2002. Doppler radio sounding of disturbances in the E and F regions of the ionosphere during launches and flights of spacecraft. Kosm. nauka tehnol., 8(Supplement2), pp. 132—143. DOI: https://doi.org/10.15407/knit2002.02s.13218. Burmaka, V.P., Kostrov, L.S., and Chernogor, L.F., 2004. Statistics of Signals of the HF Doppler Radar Sensing the Bottomside Ionosphere Disturbed by Rocket Launches and Solar Terminator. Telecommunications and Radio Engeneering, 61(2—6), pp. 150—177. DOI: https://doi.org/10.1615/TelecomRadEng.v61.i2.7019. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2003. Results of combined radio physical observations of wave disturbances in geospace which accompanied space vehicle launches and flights. Kosm. nauka tehnol., 9(Supplement2), pp. 57—61. DOI: https://doi.org/10.15407/knit2003.02s.05720. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Clustered-Instrument Studies of Ionospheric Wave Disturbances Accompanying Rocket Launches against the Background of Nonstationary Natural Processes. Radio Phys. Radio Astron., 9(1),pp. 5—28.21. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Radar observations of wave-like disturbances in ionosphere, associated with space vehicle flights. Space Sci. Technol., 10(5—6), pp. 113—117. DOI: https://doi.org/10.15407/knit2004.05.11322. Burmaka, V.P., Chernogor, L.F., and Tcherniak, Y.V., 2005. Geospace Wave Disturbances Accompanying "Soyuz" and "Proton" Launches and Flights. Radio Phys. Radio Astron., 10(3), pp. 254—272.23. Burmaka, V.P., and Chernogor, L.F., 2009. Complex Diagnostics of Ionospheric Plasma Disturbed by Far Rocket Launches. Radio Phys. Radio Astron., 14(1), pp. 26—44.24. Garmash, K.P., Leus, S.G., Chernogor, L.F., and Shamota, M.A., 2009. Geomagnetic pulsations associated with rocket launches from different cosmodromes of the world. Space Sci. Technol., 15(1), pp. 31—43. DOI: https://doi.org/10.15407/knit2009.01.03125. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric eff ects during rocket "Proton" flight: results of vertical sounding. Space Sci. Technol., 16(3), pp. 15—21. DOI: https://doi.org/10.15407/knit2010.03.01526. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric Effects During Flights of the Rocket "Soyuz" Under Magnetically Quiet and Magnetically Disturbed Conditions. Space Sci. Technol., 16(3), pp. 22—31. DOI: https://doi.org/10.15407/knit2010.03.02227. Zhivolup, T.G., and Chernogor, L.F., 2011. Comparative analysis of the disturbances in the ionosphere, caused by rocket launches "Proton" and "Soyuz". The Bulletin of NTU "KhPI". Radio Physics and Ionosphere, 44, pp. 18—26.28. Chernogor, L.F., and Zhivolup, T.G., 2011. Comparative analysis of ionospheric effects as observed during "Proton" rocket flights under diff erent space weather conditions. Radio Phys. Radio Astron., 3(2), pp. 139—148. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i2.6029. Kakinami, Y., Yamamoto, M., Chen, C.-H., Watanabe, S., Lin, C., Liu, J.-Y., and Habu, H, 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys., 118(8), pp. 5184—5189. DOI: https://doi.org/10.1002/jgra.5050830. Lin, C.H., Lin, J.T., Chen, C.H., Liu, J.Y., Sun, Y.Y., Kakinami, Y., Matsumura, M., Chen, W.H., Liu, H., and Rau, R.J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys., 32(9), pp. 1145—1152. DOI: https://doi.org/10.5194/angeo-32-1145-201431. Ding, F., Wan, W., Mao, T., Wang, M., Ning, B., Zhao, B., and Xiong, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett., 41(10), pp. 3351—3358. DOI: https://doi.org/10.1002/2014GL06010732. Nakashima, Y., and Heki, K., 2014. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Sci., 49(7), pp. 497—505. DOI: https://doi.org/10.1002/2014RS00541333. Chernogor, L.F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ.34. Chernogor, L.F., and Blaunstein, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, N. Y.: CRC Press. Taylor & Francis Group.35. Lin, C.C.H., Shen, M.-H., Chou, M.-Y., Chen, C.-H., Yue, J., Chen, P.-C., and Matsumura, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett., 44(15), pp. 7578—7586.DOI: https://doi.org/10.1002/2017GL07419236. Chou, M.-Y., Shen, M.-H., Lin, C.C.H., Yue, J., Chen, C.-H., Liu, J.-Y., and Lin, J.-T, 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather, 16(2), pp. 172—184. DOI: https://doi.org/10.1002/2017SW00173837. Chou, M.-Y., Lin, C.C.H., Shen, M.-H., Yue, J., Huba, J.D., and Chen, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett., 45(13), pp. 6334—6342. DOI: https://doi.org/10.1029/2018GL07808838. Li, G., Ning, B., Abdu, M.A., Wang, C., Otsuka, Y., Wan, W., Lei, J., Nishioka, M., Tsugawa, T., Hu, L., Yang, G., and Yan, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet.Sci., 5(1), 11. DOI: https://doi.org/10.1186/s40645-018-0172-y39. Ssessanga, N., Kim, Y.H., Choi, B., and Chung, J.-K., 2018. The 4D‐var estimation of North Korean rocket exhaust emissions into the ionosphere. J. Geophys. Res. Space Phys., 123(3), pp. 2315—2326. DOI: https://doi.org/10.1002/2017JA02459640. Zhu, J., Fang, H., Xia, F., Wan, T., and Tan, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys., 2019, 7935067. DOI: https://doi.org/10.1155/2019/793506741. Savastano, G., Komjathy, A., Shume, E., Vergados, P., Ravanelli, M., Verkhoglyadova, O., Meng, X., and Crespi, M., 2019. Advantages of geostationary satellites for ionospheric anomaly studies: Ionospheric plasma depletion following a rocket launch. Remote Sens., 11(14), 1734. DOI: https://doi.org/10.3390/rs1114173442. Bowden, G.W., Lorrain, P., and Brown, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys., 125(6), e2020JA027836. DOI: https://doi.org/10.1029/2020JA02783643. Saha, K., De, B. K., Paul, B., and Guha, A., 2020. Satellite launch vehicle effect on the Earth’s lower ionosphere: A case study. Adv. Space Res., 65(11), pp. 2507—2514. DOI: https://doi.org/10.1016/j.asr.2020.02.02644. Zhu, J., and Fang, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res., 65(3), pp. 933—942. DOI: https://doi.org/10.1016/j.asr.2019.10.02845. Ma, X., Fang, H., Wang, S., and Chang, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci., 56(4), e2020RS007183. DOI: https://doi.org/10.1029/2020RS00718346. Chernogor, L.F., Garmash, K.P., Podnos, V.A., and Tyrnov, O.F., 2013. Th e V.N. Karazin Kharkiv National University Radio Physical Observatory — the tool for ionosphere monitoring in space experiments. Space Project "Ionosat-Micro". Kyiv, Ukraine: Academperiodika Publ., pp. 160—182. Предмет і мета роботи. Іоносфера є основним каналом поширення радіохвиль. Її стан визначається станом атмосферно-космічної погоди, що залежить від процесів на Сонці, у геокосмосі та в атмосфері Землі. Внесок у стан атмосферно-космічної погоди роблять і старти та польоти потужних ракет. Метою цієї роботи є представлення результатів спостережень та аналізу збурень в іоносфері, які супроводжували старти та польоти важких ракет з різних космодромів світу.Методи та методологія. Для діагностики збурень в іоносфері використовувався доплерівський радар вертикального зондування, здатний виявляти відносні збурення концентрації електронів 10–3...10–2 % за періоди коливань 102...103 с. Сигнал биттів відбитого від іоносфери та опорного сигналів піддавався спектральній обробці на часовому інтервалі в 1 хв.Результати. За даними спостережень, старт ракети з космодрому Плесецьк (РФ) супроводжувався аперіодичним збуренням зі швидкістю 1000...1140 м/с упродовж ~20 хв. Збурення зі швидкістю 450...500 м/с також було аперіодичним. Квазіперіодичне збурення з періодом 6...7 хв і швидкістю 330...340 м/с переносилося довгохвильовим інфразвуком. Амплітуда відносного збурення концентрації електронів була близькою до δN≈ 1 %. Для атмосферних гравітаційних хвиль з періодом 20...30 хв δN оцінюється як 6...14 %. Після старту ракети «Протон М» спостерігалися три групи збурень зі швидкостями 555, 240 і 170 м/с; при цьому δN≈ 1.5...3 %. При старті ракети з космодрому Веньчан (КНР) відзначено три можливі групи збурень зі швидкостями 560, 410 і 270 м/с. Для квазіперіодичного збурення значення δN≈ 1.5 %. Збурення, що були зареєстрованими після старту ракети Falcon 9, швидше за все, не пов ̓язані з польотом ракети. Аперіодичні збурення, що послідували за стартом ракети Ariane 5, могли бути пов ̓язаними з польотом ракети.Висновки. Виявлені збурення, які супроводжували старти та польоти важких ракет для космодромів, розташованих на відстані ~1.5...2.5 тис. км від місця реєстрації.Ключові слова: політ ракети, великомасштабне збурення, іоносфера, аперіодичне та квазіперіодичне збурення, концентрація електронівСтаття надійшла до редакції 02.12.2021Radio phys. radio astron. 2025, 30(4): 232-249БІБЛІОГРАФІЧНИЙ СПИСОК1. Booker H.G. A local reduction of F region ionization due to missile transit. J. Geophys. Res. 1961. Vol. 66, Iss. 4. P. 1073-1079.2. Jackson J.E., Whale H.A., and Bauer S.J. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. 1962. Vol. 67, Iss. 5. P. 2059—2061. DOI: 10.1029/JZ067i005p020593. Mendillo M., Hawkins G.S., and Klobuchar J.A. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab.Science. 1975. Vol. 187, Iss. 4174. P. 343—346. DOI: 10.1126/science.187.4174.3434. Mendillo M., Hawkins G.S., and Klobuchar J.A. A sudden vanishing of the ionospheic F region due to the launch of Skylab.J. Geophys. Res. 1975. Vol. 80, Iss. 16. P. 2217—2228. DOI: 10.1029/JA080i016p022175. Mendillo M. The effect of rocket launches on the ionosphere. Adv. Space Res. 1981. Vol. 1, Iss. 2. P. 275—290.DOI: 10.1016/0273-1177(81)90302-16. Zinn J, Sutherland C.D., Stone S.N., Duncan L.M., and Behnke R. Ionospheric effects of rocket exhaust products: HEAO-Cand Skylab. J. Atmos. Terr. Phys. 1982. Vol. 44, Iss. 12. P. 1143—1171. DOI: 10.1016/0021-9169(82)90025-37. Wand R.H., and Mendillo M. Incoherent scatter observations of an artificially modifi ed ionosphere. J. Geophys. Res. 1984.Vol. 89, Iss. A1. P. 203—215. DOI: 10.1029/JA089iA01p002038. Mendillo M., Baumgardner J., Allen D.P., Foster J., Holt J., Ellis G.R.A., Klekociuk A., and Reber G. Spacelab-2 plasmadepletion experiments for ionospheric and radio astronomical studies. Science. 1987. Vol. 238, Iss. 4831. P. 1260—1264.DOI: 10.1126/science.238.4831.12609. Mendillo M. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. 1988. Vol. 8, Iss. 1. P. 51—62.DOI: 10.1016/0273-1177(88)90342-010. Bernhardt P.A., Kashiwa B.A., Tepley C.A., and Noble S.T. Spacelab 2 Upper Atmospheric Modification Experiment OverArecibo. I — Neutral Gas Dynamics. Astrophys. Lett. Comm. 1988. Vol. 27, Iss. 3. P. 169—181.11. Bernhardt P., Swartz W., Kelly M., Sulzer M., and Noble S. T. Spacelab 2 Upper Atmospheric Modification Experiment overArecibo. II — Plasma dynamics. Astrophys. Lett. Comm. 1988. Vol. 27, Iss. 3. P. 183—198.12. Bernhardt P.A., Ballenthin J.O., Baumgardner J.L., Bhatt A., Boyd I.D., Burt J.M., Caton R.G., Coster A., Erickson P.J.,Huba J.D., Earle G.D., Kaplan C.R., Foster J.C., Groves K.M., Haaser R.A., Heelis R.A., Hunton D.E., Hysell D.L.,Klenzing J.H., Larsen M.F., Lind F.D., Pedersen T.R., Pfaff R.F., Stoneback R.A., Roddy P.A., Rodriquez S.P., San Antonio G.S.,Schuck P.W., Siefring C.L., Selcher C.A., Smith S.M., Talaat E.R., Thomason J.F., Tsunoda R.T., and Varney R.H. Groundand Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci. 2012. Vol. 40, Is. 5.P. 1267—1286. DOI: 10.1109/TPS.2012.218581413. Gritchin A.I., Dorohov V.L., Kapanin I.I., Karpachov A.I., Kostrov L.S., Leus S.G., Martynenko S.I., Mashtaler N.N., Mi-lovanov Yu.B., Misyura V.A., Pakhomova O.V., Podnos V.A., Pokhilko S.N., Protopop E.N., Rozumenko V.T., Somov V.G.,Tyrnov O.F., Fedorenko V.N., Fedorenko Yu.P., Tsymbal A.M., Chernogor L.F., Chulakov S.G., Shemet A.S. Complex radio-physical investigations of ionospheric disturbances caused by launches and flights of spacecraft. Фізика космічної плазми.Київ: ДКАУ, 1995. С. 161—170.14. Chernogor L.F., Garmash K.P., Kostrov L.S., Rozumenko V.T., Tyrnov O.F., and Tsymbal A.M. Perturbations in the iono-sphere following U.S. powerful space vehicle launching. Radio Phys. Radio Astron. 1998. Vol. 3, Iss. 2. P. 181—190.15. Костров Л.С., Розуменко В.Т., Чорногор Л.Ф. Доплерівське радіозондування збурень у середній іоносфері, щосупроводжують старти та польоти космічних апаратів. Радіофізика і радіоастрономія. 1999. Т. 4, No 3. С. 227—246.16. Костров Л.С., Розуменко В.Т., Чорногор Л.Ф. Результати доплерівських спостережень збурень у геокосмосі, щосупроводжували польоти космічних апаратів. Косм. наука технол. 2003. Т. 9, додаток 2. С. 76—81. DOI: 10.15407/knit2003.02s.07617. Костров Л.С., Розуменко В.Т., Чорногор Л.Ф. Доплерівське радіозондування збурень у E- та F-областях іоносферипри стартах і польотах космічних апаратів. Косм. наука технол. 2002. Т. 8, додаток 2. С. 132—143. DOI: 10.15407/knit2002.02s.13218. Бурмака В.П., Костров Л.С., Чорногор Л.Ф. Статистичні характеристики сигналів доплерівського ВЧ-радара підчас зондування середньої іоносфери, збуреної стартами ракет та сонячним термінатором. Радіофізика і радіо-астрономія. 2003. Т. 8, No 2. С. 143—162.19. Бурмака В.П., Таран В.И., Чорногор Л.Ф. Результати комплексних радіофізичних спостережень хвильових збу-рень у геокосмосі, що супроводжують старти та польоти ракет. Косм. наука технол. 2003. Т. 9, додаток 2. С. 57—61.20. Бурмака В.П., Таран В.І., Чорногор Л.Ф. Комплексні радіофізичні дослідження хвильових збурень в іоносфері, щосупроводжували старти ракет на тлі природних нестаціонарних процесів. Радіофізика і радіоастрономія. 2004.Т. 9, No 1. С. 5—28.21. Бурмака В.П., Таран В.І., Чорногор Л.Ф. Радарні спостереження хвильових процесів в іоносфері, що супроводжу-вали польоти космічних апаратів. Косм. наука технол. 2004. Т. 10, No 5—6. С. 113—117.22. Бурмака В.П., Чорногор Л.Ф., Черняк Ю.В. Хвильові збурення у геокосмосі, що супроводжували старти і польотиракет «Союз» та «Протон». Радіофізика і радіоастрономія. 2005. Т. 10, No 3. С. 254—272.23. Бурмака В.П., Чорногор Л.Ф. Комплексна діагностика іоносферної плазми, збуреної віддаленими стартами ракет.Радіофізика і радіоастрономія. 2009. Т. 14, No 1. С. 26—44.24. Гармаш К.П., Леус С.Г., Чорногор Л.Ф., Шамота М.О. Геомагнітні пульсації, що супроводжували старти ракет зрізних космодромів світу. Косм. наука технол. 2009. Т. 15, No 1. С. 31—43.25. Живолуп Т.Г., Чорногор Л.Ф. Іоносферні ефекти протягом польоту ракети «Протон»: результати вертикальногозондування. Косм. наука технол. 2010. Т. 16, No 3. С. 25—31.26. Живолуп Т.Г., Чорногор Л.Ф. Іоносферні ефекти протягом польотів ракети «Союз» у спокійних та магнітозбуре-них умовах. Косм. наука технол. 2010. Т. 16, No 3. С. 32—41.27. Живолуп Т.Г., Чорногор Л.Ф. Порівняльний аналіз збурень в іоносфері, викликаних стартами ракет «Протон» та«Союз». Вісник Нац. техн. ун-ту «ХПІ». Радіофізика та іоносфера: збірник наук. праць. 2011. No 44. С. 18—26.28. Чорногор Л.Ф., Живолуп Т.Г. Порівняльний аналіз іоносферних ефектів протягом польотів ракети «Протон» зарізних станів космічної погоди. Радіофізика і радіоастрономія. 2011. Т. 16, No 4. С. 394—403.29. Kakinami Y., Yamamoto M., Chen C.-H., Watanabe S., Lin C., Liu J.-Y. and Habu H. Ionospheric disturbances induced by amissile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys. 2013. Vol. 118, Iss. 8. P. 5184—5189.DOI: 10.1002/jgra.5050830. Lin C.H., Lin J.T., Chen C.H., Liu J.Y., Sun Y.Y., Kakinami Y., Matsumura M., Chen W.H., Liu H., and Rau R.J. Ionosphericshock waves triggered by rockets. Ann. Geophys. 2014. Vol. 32, Iss. 9. P. 1145—1152. DOI: 10.5194/angeo-32-1145-201431. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., and Xiong B. Ionospheric response to the shock and acousticwaves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. 2014. Vol. 41, Iss. 10. P. 3351—3358.DOI: 10.1002/2014GL06010732. Nakashima Y., and Heki K. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array inJapan. Radio Sci. 2014. Vol. 49, Iss. 7. P. 497—505. DOI: 10.1002/2014RS00541333. Чорногор Л.Ф. Радіофізичні та геомагнітні ефекти стартів ракет: Монографія. Харків: ХНУ імені В.Н. Каразіна,2009. 386 с.34. Chernogor L.F., and Blaunstein N. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-EarthEnvironment. Boca Raton, London, N. Y.: CRC Press. Taylor & Francis Group, 2013. 542 p.35. Lin C.C.H., Shen M.-H., Chou M.-Y., Chen C.-H., Yue J., Chen P.-C., and Matsumura M. Concentric traveling ionosphericdisturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017. Vol. 44, Iss. 15. P. 7578—7586.DOI: 10.1002/2017GL07419236. Chou M.-Y., Shen M.-H., Lin C.C.H., Yue J., Chen C.-H., Liu J.-Y., and Lin J.-T. Gigantic Circular Shock Acoustic Wavesin the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. 2018. Vol. 16, Iss. 2. P. 172—184.DOI: 10.1002/2017SW00173837. Chou M.-Y., Lin C.C.H., Shen M.-H., Yue J., Huba J.D., and Chen C.-H. Ionospheric Disturbances Triggered by SpaceXFalcon Heavy. Geophys. Res. Lett. 2018. Vol. 45, Iss. 13. P. 6334—6342. DOI: 10.1029/2018GL07808838. Li G., Ning B., Abdu M.A., Wang C., Otsuka Y., Wan W., Lei J., Nishioka M., Tsugawa T., Hu L., Yang G., and Yan C.Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci. 2018.Vol. 5, Iss. 1. 11. DOI: 10.1186/s40645-018-0172-y39. Ssessanga N., Kim Y.H., Choi B., and Chung J.-K. The 4D‐var estimation of North Korean rocket exhaust emissions intothe ionosphere. J. Geophys. Res. Space Phys. 2018. Vol. 123, Iss. 3. P. 2315—2326. DOI: 10.1002/2017JA02459640. Zhu J., Fang H., Xia F., Wan T., and Tan X. Numerical Simulation of Ionospheric Disturbance Generated by BallisticMissile. Adv. Math. Phys. 2019. Vol. 2019. 7935067. DOI: 10.1155/2019/793506741. Savastano G., Komjathy A., Shume E., Vergados P., Ravanelli M., Verkhoglyadova O., Meng X., and Crespi M. Advantagesof geostationary satellites for ionospheric anomaly studies: Ionospheric plasma depletion following a rocket launch. RemoteSens. 2019. Vol. 11, Iss. 14. 1734. DOI: 10.3390/rs1114173442. Bowden G.W., Lorrain P., and Brown M. Numerical Simulation of Ionospheric Depletions Resulting From RocketLaunches Using a General Circulation Model. J. Geophys. Res. Space Phys. 2020. Vol. 125, Iss. 6. e2020JA027836.DOI: 10.1029/2020JA02783643. Saha K., De B.K., Paul B., and Guha A. Satellite launch vehicle effect on the Earth’s lower ionosphere: A case study. Adv.Space Res. 2020. Vol. 65, Iss. 11. P. 2507—2514. DOI: 10.1016/j.asr.2020.02.02644. Zhu J., and Fang H. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv.Space Res. 2020. Vol. 65, Iss. 3. P. 933—942. DOI: 10.1016/j.asr.2019.10.02845. Ma X., Fang H., Wang S., and Chang S. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propa-gation. Radio Sci. 2021. Vol. 56, Is. 4. e2020RS007183. DOI: 10.1029/2020RS00718346. Чорногор Л.Ф., Гармаш К.П., Поднос В.А., Тирнов О.Ф. Радіофізична обсерваторія Харківського національного уні-верситету імені В.Н. Каразіна — засіб для моніторингу іоносфери у космічних експериментах. Космічний проект«Іоносат-Мікро». Київ: Академперіодика, 2013. С. 160—182. Видавничий дім «Академперіодика» 2025-12-08 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1481 10.15407/rpra30.04.232 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 4 (2025); 232 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 4 (2025); 232 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 4 (2025); 232 2415-7007 1027-9636 10.15407/rpra30.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1481/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY |