Tectonolineament zones of east-north-east trending as constituent element of rhegmatogenic fault network of the Balkan-Black sea region

Structural geomorphological analysis of large scale 3D digital radar models of seabed landscape topography has allowed us to reveal within the Balkan-Black Sea region a system of tectonically formed subparallel trans-regional linear slab-shaped zones. On the map they appeared as ENE-directed through...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Pokalyuk, Volodymyr, Lomakin, Ihor, Shuraev, Ihor
Формат: Стаття
Мова:rus
Опубліковано: Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine, Kyiv, Ukraine 2018
Теми:
Онлайн доступ:https://ujrs.org.ua/ujrs/article/view/134
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Remote Sensing of the Earth

Репозитарії

Ukrainian Journal of Remote Sensing of the Earth
Опис
Резюме:Structural geomorphological analysis of large scale 3D digital radar models of seabed landscape topography has allowed us to reveal within the Balkan-Black Sea region a system of tectonically formed subparallel trans-regional linear slab-shaped zones. On the map they appeared as ENE-directed throughout stripes, distanced approximately 100 km from each other. These linear zones are significant components of the rhegmatogenic fault network of the examined area, as you can see on the map: I — South Carpathian, II — Peri-Carpathian, III — Azov Adriatic, IV — Balkan Crimean, V — North Greek, VI — North Aegean, VII — North Anatolian. Without interfering with intra-regional geological elements, they intersect a wide range of diverse types of geological blocks with different structure, age and origin, and expand into the seabeds of the Black and Aegean seas. The general consistency of their spatial, morphologic structural and kinematic organization confirmes a uniform dynamic mechanism of their formation, likely connected to the planetary rotation-induced stress.