Classification of BPG-Based Lossy Compressed Noisy Images
Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification. In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification. Classification can be also inf...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine, Kyiv, Ukraine
2024
|
Теми: | |
Онлайн доступ: | https://ujrs.org.ua/ujrs/article/view/266 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Remote Sensing of the Earth |
Репозитарії
Ukrainian Journal of Remote Sensing of the EarthРезюме: | Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification. In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification. Classification can be also influenced by methodology of classifier learning. In this paper, we consider peculiarities of lossy compression of three-channel noisy images by better portable graphics (BPG) encoder and their further classification. It is demonstrated that improvement of data classification accuracy is not observed if a given image is compressed in the neighborhood of optimal operation point (OOP) and the classifier training is performed for the noisy image. Performance of neural network based classifier is studied. As demonstrated, its training for compressed remote sensing data is able to provide certain benefits compared to training for noisy (uncompressed) data. Examples for Sentinel data used in simulations are offered. |
---|