Classification of BPG-Based Lossy Compressed Noisy Images

Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification. In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification. Classification can be also inf...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Proskura, Galina, Naumenko, Victoria, Lukin, Volodymyr
Формат: Стаття
Мова:English
Опубліковано: Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine, Kyiv, Ukraine 2024
Теми:
Онлайн доступ:https://ujrs.org.ua/ujrs/article/view/266
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Remote Sensing of the Earth

Репозитарії

Ukrainian Journal of Remote Sensing of the Earth
Опис
Резюме:Acquired remote sensing images can be noisy. This fact has to be taken into account in their lossy compression and classification. In particular, a specific noise filtering effect is usually observed due to lossy compression and this can be positive for classification. Classification can be also influenced by methodology of classifier learning. In this paper, we consider peculiarities of lossy compression of three-channel noisy images by better portable graphics (BPG) encoder and their further classification. It is demonstrated that improvement of data classification accuracy is not observed if a given image is compressed in the neighborhood of optimal operation point (OOP) and the classifier training is performed for the noisy image. Performance of neural network based classifier is studied. As demonstrated, its training for compressed remote sensing data is able to provide certain benefits compared to training for noisy (uncompressed) data. Examples for Sentinel data used in simulations are offered.