2025-02-23T14:27:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018030%22&qt=morelikethis&rows=5
2025-02-23T14:27:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018030%22&qt=morelikethis&rows=5
2025-02-23T14:27:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T14:27:09-05:00 DEBUG: Deserialized SOLR response

Донор-акцепторна взаємодія в плівках гетероструктур і композитів тетрацена із тетраціанхінодиметаном

The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sput...

Full description

Saved in:
Bibliographic Details
Main Authors: Gorishnyi, M. P., Verbitsky, A. B.
Format: Article
Language:English
Ukrainian
Published: Publishing house "Academperiodika" 2018
Subjects:
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018030
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sputtering of the components – successively or simultaneously, respectively – in vacuum. The photovoltaic spectra were measured, by using the condenser method. It is found for the first time that the largest changes ΔD1 in the TC/TCNQ and TC + TCNQ absorption spectra with respect to the sum of the absorption spectra of the components are observed in the intervals of TCNQ dimeric bands at 2.214 eV (ΔD1 &lt; 0) and in all TC bands (ΔD1 &gt; 0). Those changes testify to the formation of charge transfer complexes between the TC (the electron donor) and TCNQ (the electron acceptor) molecules at the interfaces in the TC/TCNQ heterostructures and in the bulk of TC + TCNQ composites, which is also confirmed by the appearance of TC+- and TCNQ−-bands in the photovoltaic spectra of both the heterostructure and composite films. This result is important for a deeper understanding of the operating mechanisms in various potentially imaginable devices based on those heterostructures and composites (solar cells, field-effect transistors, and light-emitting diodes).