Рівняння квазілінійної теорії з широкою резонансною областю

An equation of the quasilinear theory is derived. It is based on the same assumptions as the well-known equation in [1]. However, it has another form of the quasilinear operator, which does not contain the longitudinal wavenumber. Due to this, characteristics of the derived equation determine the ro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kolesnichenko, Ya. I., Lutsenko, V. V., Rudenko, T. S.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2018
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018110
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:An equation of the quasilinear theory is derived. It is based on the same assumptions as the well-known equation in [1]. However, it has another form of the quasilinear operator, which does not contain the longitudinal wavenumber. Due to this, characteristics of the derived equation determine the routes of a quasilinear evolution of the particle distribution function, even when the resonance region determined by the spectrum of longitudinal wavenumbers is wide. It is demonstrated that during the ion acceleration by the ion cyclotron resonant heating, (i) the change of the longitudinal ion energy can be considerable and (ii) the increase of the particle energy may well exceed the increase described by characteristics of the Kennel–Engelmann equation (which are shown, in particular, in [10]), because these characteristics represent the ways of the quasilinear diffusion only when the resonance region is narrow.