Магнiтна динамiка мультифероїка з антиферомагнiтним прошарком

Shape effects in magnetic particles are widely studied, because of the ability of the shape and the size to control the parameters of a sample during its production. Experiments with nano-sized samples show that the shape can affect also the properties of antiferromagnetic (AFM) materials. However,...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Kondovych, S. V., Gomonay, H. V., Loktev, V. M.
Format: Article
Language:English
Ukrainian
Published: Publishing house "Academperiodika" 2018
Subjects:
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018329
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Description
Summary:Shape effects in magnetic particles are widely studied, because of the ability of the shape and the size to control the parameters of a sample during its production. Experiments with nano-sized samples show that the shape can affect also the properties of antiferromagnetic (AFM) materials. However, the theoretical interpretation of these effects is under discussion. A model to study the shape-induced effects in AFM particles at the AFM resonance frequency is proposed. The Lagrange function method is used to calculate the spectrum of resonance oscillations of the AFM vector in a synthetic multiferroic (piezoelectric + antiferromagnet). The influence of the specimen shape on the AFM resonance frequency in the presence of an external magnetic field is studied. Conditions for a resonance under the action of an external force or for a parametric resonance to arise in the magnetic subsystem are considered.