Об’єднанi (p, q; a, y, l)-деформацiї осциляторних та гiбридних осциляторних алгебр i двовимiрної конформної теорiї поля
The unified multiparametric generalizations of the well-known two-parameter deformed oscillator and hybrid oscillator algebras are introduced. The basic versions of these deformations are obtained by imputing the new free parameters in the structure functions and by a generalization of defining rela...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Publishing house "Academperiodika"
2018
|
| Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018391 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of Physics| Резюме: | The unified multiparametric generalizations of the well-known two-parameter deformed oscillator and hybrid oscillator algebras are introduced. The basic versions of these deformations are obtained by imputing the new free parameters in the structure functions and by a generalization of defining relations of these algebras. The generalized Jordan–Schwinger and Holstein–Primakoff realizations of the U^aypq (su(2)) algebra by the creations and annihilations operators of the basic versions of these deformations are found. The (p, q; a, y, l)-deformation of the two-dimensional conformal field theory is considered. The pole structure of the (p, q; a, y, l)-deformed operator product expansion (OPE) of the holomorphic component of the energy-momentum tensor with primary fields is found. The two-point correlation function of the (p, q; a, y, l)-deformed two-dimensional conformal field theory is calculated. |
|---|