Мiкроструктура He II за наявностi границь

We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Tomchenko, M. D.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2018
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m) (q = 1) at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q = 2^−d, where d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems.