2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018421%22&qt=morelikethis&rows=5
2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018421%22&qt=morelikethis&rows=5
2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:37:33-05:00 DEBUG: Deserialized SOLR response

Мiкроструктура He II за наявностi границь

We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈&nbsp;√︂((︁h^2*k^2/2m)^2)&nbsp;+&nbsp;qnv3(k) ~ (h^2*...

Full description

Saved in:
Bibliographic Details
Main Author: Tomchenko, M. D.
Format: Article
Language:English
Published: Publishing house "Academperiodika" 2018
Subjects:
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421
Tags: Add Tag
No Tags, Be the first to tag this record!
id ujp2-article-2018421
record_format ojs
spelling ujp2-article-20184212019-03-29T08:35:48Z Microstructure of He II in the Presence of Boundaries Мiкроструктура He II за наявностi границь Tomchenko, M. D. Bose particles Bogolyubov dispersion law Bose liquid Bose gas We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈&nbsp;√︂((︁h^2*k^2/2m)^2)&nbsp;+&nbsp;qnv3(k) ~ (h^2*k^2/m)&nbsp;(q&nbsp;= 1)&nbsp;at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q&nbsp;= 2^−d, where&nbsp;d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems. Дослiджено мiкроструктуру системи взаємодiючих бозе-частинок за нульових граничних умов, i знайдено два можливих впорядкування. Одне традицiйне, та при слабкiй взаємодiї характеризується законом дисперсiї Боголюбова E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m)&nbsp;(q = 1). А друге – нове та характеризується тим самим законом дисперсiї, але з&nbsp;q = 2^−d, де&nbsp;d – кiлькiсть нециклiчних координат. При слабкiй взаємодiї енергiя основного стану менша для нового розв’язку. Границi впливають на об’ємну мiкроструктуру внаслiдок вiдмiнностi топологiї замкненої та вiдкритої систем. Publishing house "Academperiodika" 2018-10-18 Article Article Peer-reviewed Рецензована стаття application/pdf https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421 10.15407/ujpe59.02.0123 Ukrainian Journal of Physics; Vol. 59 No. 2 (2014); 123 Український фізичний журнал; Том 59 № 2 (2014); 123 2071-0194 2071-0186 10.15407/ujpe59.02 en https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421/421 Copyright (c) 2018 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
institution Ukrainian Journal of Physics
collection OJS
language English
topic Bose particles
Bogolyubov dispersion law
Bose liquid
Bose gas
spellingShingle Bose particles
Bogolyubov dispersion law
Bose liquid
Bose gas
Tomchenko, M. D.
Мiкроструктура He II за наявностi границь
topic_facet Bose particles
Bogolyubov dispersion law
Bose liquid
Bose gas
format Article
author Tomchenko, M. D.
author_facet Tomchenko, M. D.
author_sort Tomchenko, M. D.
title Мiкроструктура He II за наявностi границь
title_short Мiкроструктура He II за наявностi границь
title_full Мiкроструктура He II за наявностi границь
title_fullStr Мiкроструктура He II за наявностi границь
title_full_unstemmed Мiкроструктура He II за наявностi границь
title_sort мiкроструктура he ii за наявностi границь
title_alt Microstructure of He II in the Presence of Boundaries
description We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈&nbsp;√︂((︁h^2*k^2/2m)^2)&nbsp;+&nbsp;qnv3(k) ~ (h^2*k^2/m)&nbsp;(q&nbsp;= 1)&nbsp;at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q&nbsp;= 2^−d, where&nbsp;d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems.
publisher Publishing house "Academperiodika"
publishDate 2018
url https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421
work_keys_str_mv AT tomchenkomd microstructureofheiiinthepresenceofboundaries
AT tomchenkomd mikrostrukturaheiizanaâvnostigranicʹ
first_indexed 2023-03-24T08:55:42Z
last_indexed 2023-03-24T08:55:42Z
_version_ 1795757619454935040