2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018421%22&qt=morelikethis&rows=5
2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018421%22&qt=morelikethis&rows=5
2025-02-22T10:37:33-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:37:33-05:00 DEBUG: Deserialized SOLR response
Мiкроструктура He II за наявностi границь
We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Publishing house "Academperiodika"
2018
|
Subjects: | |
Online Access: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
ujp2-article-2018421 |
---|---|
record_format |
ojs |
spelling |
ujp2-article-20184212019-03-29T08:35:48Z Microstructure of He II in the Presence of Boundaries Мiкроструктура He II за наявностi границь Tomchenko, M. D. Bose particles Bogolyubov dispersion law Bose liquid Bose gas We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m) (q = 1) at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q = 2^−d, where d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems. Дослiджено мiкроструктуру системи взаємодiючих бозе-частинок за нульових граничних умов, i знайдено два можливих впорядкування. Одне традицiйне, та при слабкiй взаємодiї характеризується законом дисперсiї Боголюбова E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m) (q = 1). А друге – нове та характеризується тим самим законом дисперсiї, але з q = 2^−d, де d – кiлькiсть нециклiчних координат. При слабкiй взаємодiї енергiя основного стану менша для нового розв’язку. Границi впливають на об’ємну мiкроструктуру внаслiдок вiдмiнностi топологiї замкненої та вiдкритої систем. Publishing house "Academperiodika" 2018-10-18 Article Article Peer-reviewed Рецензована стаття application/pdf https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421 10.15407/ujpe59.02.0123 Ukrainian Journal of Physics; Vol. 59 No. 2 (2014); 123 Український фізичний журнал; Том 59 № 2 (2014); 123 2071-0194 2071-0186 10.15407/ujpe59.02 en https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421/421 Copyright (c) 2018 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine |
institution |
Ukrainian Journal of Physics |
collection |
OJS |
language |
English |
topic |
Bose particles Bogolyubov dispersion law Bose liquid Bose gas |
spellingShingle |
Bose particles Bogolyubov dispersion law Bose liquid Bose gas Tomchenko, M. D. Мiкроструктура He II за наявностi границь |
topic_facet |
Bose particles Bogolyubov dispersion law Bose liquid Bose gas |
format |
Article |
author |
Tomchenko, M. D. |
author_facet |
Tomchenko, M. D. |
author_sort |
Tomchenko, M. D. |
title |
Мiкроструктура He II за наявностi границь |
title_short |
Мiкроструктура He II за наявностi границь |
title_full |
Мiкроструктура He II за наявностi границь |
title_fullStr |
Мiкроструктура He II за наявностi границь |
title_full_unstemmed |
Мiкроструктура He II за наявностi границь |
title_sort |
мiкроструктура he ii за наявностi границь |
title_alt |
Microstructure of He II in the Presence of Boundaries |
description |
We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m) (q = 1) at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q = 2^−d, where d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems. |
publisher |
Publishing house "Academperiodika" |
publishDate |
2018 |
url |
https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018421 |
work_keys_str_mv |
AT tomchenkomd microstructureofheiiinthepresenceofboundaries AT tomchenkomd mikrostrukturaheiizanaâvnostigranicʹ |
first_indexed |
2023-03-24T08:55:42Z |
last_indexed |
2023-03-24T08:55:42Z |
_version_ |
1795757619454935040 |