Стосовно моделювання математичного сподiвання i дисперсiї вибiрок гаусово розподiлених випадкових величин

The derivation of propagation rules for the mean and the variance of physical quantities functionally connected by the transformations X2, cosX, √X, and arccosX, which were proposed in Ukr. J. Phys. 61, 345 (2016) and Ukr. J. Phys. 62, 184 (2017), has been analyzed. It is shown that the substantiati...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kosobutskyy, P.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Publishing house "Academperiodika" 2018
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018639
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:The derivation of propagation rules for the mean and the variance of physical quantities functionally connected by the transformations X2, cosX, √X, and arccosX, which were proposed in Ukr. J. Phys. 61, 345 (2016) and Ukr. J. Phys. 62, 184 (2017), has been analyzed. It is shown that the substantiation of the “error propagation rules” was not based on the fundamentals of probability theory and mathematical statistics. Moreover, the proposed reduction of indices, X → √X and X2 → X, in the roots of the square equations forming a basis for the propagation formulas restricts the values of the normal distribution parameters mX and qX.