Стосовно моделювання математичного сподiвання i дисперсiї вибiрок гаусово розподiлених випадкових величин

The derivation of propagation rules for the mean and the variance of physical quantities functionally connected by the transformations X2, cosX, √X, and arccosX, which were proposed in Ukr. J. Phys. 61, 345 (2016) and Ukr. J. Phys. 62, 184 (2017), has been analyzed. It is shown that the substantiati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kosobutskyy, P.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Publishing house "Academperiodika" 2018
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018639
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:The derivation of propagation rules for the mean and the variance of physical quantities functionally connected by the transformations X2, cosX, √X, and arccosX, which were proposed in Ukr. J. Phys. 61, 345 (2016) and Ukr. J. Phys. 62, 184 (2017), has been analyzed. It is shown that the substantiation of the “error propagation rules” was not based on the fundamentals of probability theory and mathematical statistics. Moreover, the proposed reduction of indices, X → √X and X2 → X, in the roots of the square equations forming a basis for the propagation formulas restricts the values of the normal distribution parameters mX and qX.