Нерелятивiстський розгляд шредiнгерiвських частинок у оберненоквадратичному потенцiалi Хеллмана i потенцiалi кiльцевої форми
We have solved approximately the Schr¨odinger equation with the inversely quadratic Hellmann plus ring-shaped potential in the framework of the Nikiforov–Uvarov method. The energy eigenvalues and corresponding wave functions of the radial and angular parts are obtained in terms of Jacobi polynomials...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2018
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018661 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | We have solved approximately the Schr¨odinger equation with the inversely quadratic Hellmann plus ring-shaped potential in the framework of the Nikiforov–Uvarov method. The energy eigenvalues and corresponding wave functions of the radial and angular parts are obtained in terms of Jacobi polynomials. In special cases, our result reduces to the cases of three well-known potentials such as the Coulomb potential, inversely quadratic Yukawa potential, and Hartman potential. The energy eigenvalues are evaluated as well. Our numerical results can be useful for other physical systems. |
---|