2025-02-23T04:24:25-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018661%22&qt=morelikethis&rows=5
2025-02-23T04:24:25-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2018661%22&qt=morelikethis&rows=5
2025-02-23T04:24:25-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T04:24:25-05:00 DEBUG: Deserialized SOLR response

Нерелятивiстський розгляд шредiнгерiвських частинок у оберненоквадратичному потенцiалi Хеллмана i потенцiалi кiльцевої форми

We have solved approximately the Schr¨odinger equation with the inversely quadratic Hellmann plus ring-shaped potential in the framework of the Nikiforov–Uvarov method. The energy eigenvalues and corresponding wave functions of the radial and angular parts are obtained in terms of Jacobi polynomials...

Full description

Saved in:
Bibliographic Details
Main Authors: Antia, A. D., Ituen, E. E.
Format: Article
Language:English
Published: Publishing house "Academperiodika" 2018
Subjects:
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018661
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have solved approximately the Schr¨odinger equation with the inversely quadratic Hellmann plus ring-shaped potential in the framework of the Nikiforov–Uvarov method. The energy eigenvalues and corresponding wave functions of the radial and angular parts are obtained in terms of Jacobi polynomials. In special cases, our result reduces to the cases of three well-known potentials such as the Coulomb potential, inversely quadratic Yukawa potential, and Hartman potential. The energy eigenvalues are evaluated as well. Our numerical results can be useful for other physical systems.