Атомне розупорядкування та електронна будова сплаву Хойслера CoTiSb

With the help of the Linearized Augmented Plane Wave (LAPW) method, the role of some structural types of CoTiSb alloy in the formation of its energy, spatial, spectral, and spin characteristics has been clarified. The ground state of CoTiSb alloy, which is characterized by the highest cohesive energ...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Uvarov, V. N., Uvarov, N. V., Bespalov, S. A., Nemoshkalenko, M. V.
Format: Article
Language:English
Ukrainian
Published: Publishing house "Academperiodika" 2018
Subjects:
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018708
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Description
Summary:With the help of the Linearized Augmented Plane Wave (LAPW) method, the role of some structural types of CoTiSb alloy in the formation of its energy, spatial, spectral, and spin characteristics has been clarified. The ground state of CoTiSb alloy, which is characterized by the highest cohesive energy, is found to be realized in the case where atoms and vacancies are arranged like in the C1ba phase. Transitions to the L2ac and B2c phases with different arrangements of alloy components in their crystal lattices are accompanied by the emergence of high-energy metastable states. CoTiSb alloy in the ground state is a nonmagnetic insulator. The metastable phases transform into metals with spin-polarized electron states and magnetic moments mainly localized at cobalt atoms.