Ефективна маса домiшкового атома в бозе-рiдинi з деформованою алгеброю Гайзенберга
We consider the movement of a 3He impurity atom in the Bose liquid. We suggest to describe the many-particle correlations between atoms of the Bose liquid, by using a deformed Heisenberg algebra. As generalized coordinates, we choose the collective variables that are the Fourier components of fluctu...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2018
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018711 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозиторії
Ukrainian Journal of PhysicsРезюме: | We consider the movement of a 3He impurity atom in the Bose liquid. We suggest to describe the many-particle correlations between atoms of the Bose liquid, by using a deformed Heisenberg algebra. As generalized coordinates, we choose the collective variables that are the Fourier components of fluctuations of the density of Bose particles. The wave function of the investigated system in the zeroth approximation is the product of the wave function of the liquid helium-4 within deformed commutation relations between generalized coordinates and momenta and the plane wave of the impurity atom. We calculate the correction to the ground-state energy of the system “Bose liquid plus impurity” and the effective mass of the impurity atom 3He, by assuming that the boson-impurity interaction is a small perturbation. |
---|