Численное моделирование процесса релаксацииквантово-тепловыхфлуктуаций

A generalization of quantum-mechanical equations expressed in the hydrodynamic form by introducing terms that involve the diffusion velocity at zero and finite temperatures, as well as the diffusion pressure energy in a warm vacuum, into the Lagrangian density has been proposed. It is used as a basi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Golubjeva, O. N., Sidorov, S. V., Bar’yakhtar, V. G.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Publishing house "Academperiodika" 2019
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019165
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:A generalization of quantum-mechanical equations expressed in the hydrodynamic form by introducing terms that involve the diffusion velocity at zero and finite temperatures, as well as the diffusion pressure energy in a warm vacuum, into the Lagrangian density has been proposed. It is used as a basis for constructing a system of equations similar to the Euler equations, but making allowance for quantum-mechanical and thermal effects, for the model of one-dimensional hydrodynamics. The equations obtained generalize the equations of the Nelson stochastic mechanics. A numerical analysis of the solutions of this system allowed a conclusion to be drawn about its validity for the description of the relaxation of quantum thermal fluctuations.