Симплектична теорія поля галілеєво-коваріантних скалярного і спінорного представлень

We explore the concept of the extended Galilei group, a representation for the symplectic quantum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter space-time in the phase space. The Hilbert space is constructed endowed with a symplectic structure. We study the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Petronilo, G. X. A., Ulhoa, S. C., Santana, A. E.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2019
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019421
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:We explore the concept of the extended Galilei group, a representation for the symplectic quantum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter space-time in the phase space. The Hilbert space is constructed endowed with a symplectic structure. We study the unitary operators describing rotations and translations, whose generators satisfy the Lie algebra of G. This representation gives rise to the Schr¨odinger (Klein–Gordon-like) equation for the wave function in the phase space such that the dependent variables have the position and linear momentum contents. The wave functions are associated to the Wigner function through the Moyal product such that the wave functions represent a quasiamplitude of probability. We construct the Pauli–Schr¨odinger (Dirac-like) equation in the phase space in its explicitly covariant form. Finally, we show the equivalence between the five-dimensional formalism of the phase space with the usual formalism, proposing a solution that recovers the non-covariant form of the Pauli–Schr¨odinger equation in the phase space.