Реджевські розрізи і BFKL у наближенні NNLLA
In the leading and next-to-leading logarithmic approximations, QCD amplitudes with gluon quantum numbers in cross-channels and negative signature have the pole form corresponding to a reggeized gluon. The famous BFKL equation was derived using this form. In the next-to-next-to-leading approximation...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2019
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019486 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | In the leading and next-to-leading logarithmic approximations, QCD amplitudes with gluon quantum numbers in cross-channels and negative signature have the pole form corresponding to a reggeized gluon. The famous BFKL equation was derived using this form. In the next-to-next-to-leading approximation (NNLLA), the pole form is violated by contributions of Regge cuts. We discuss these contributions and their impact on the derivation of the BFKL equation in the NNLLA. |
---|