Поля Голдстоуна зі спіном, вищим за 1/2
We review the properties of 3d non-linear models of vector and vector-spinor Goldstone fields associated with the spontaneous breaking of certain higher-spin counterparts of supersymmetry (so-called Hietarinta algebras), whose Lagrangians are of the Volkov–Akulov type. At the quadratic order, these...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2019
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019505 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | We review the properties of 3d non-linear models of vector and vector-spinor Goldstone fields associated with the spontaneous breaking of certain higher-spin counterparts of supersymmetry (so-called Hietarinta algebras), whose Lagrangians are of the Volkov–Akulov type. At the quadratic order, these Lagrangians contain, respectively, the Chern–Simons and Rarita–Schwinger terms. The vector Goldstone model has a propagating degree of freedom which, in a decoupling limit, is a quartic Galileon scalar field (similar to those appearing in models of modified gravity). On the other hand, the vector-spinor goldstino retains the gauge symmetry of the Rarita–Schwinger action and eventually reduces to the latter by a non-linear field redefinition. We thus find that, in three space-time dimensions, the free Rarita–Schwinger action is invariant under a hidden rigid symmetry generated by fermionic vector-spinor operators and acting non-linearly on the Rarita–Schwinger goldstino. |
---|