Категорії: між кубічними та сферичними
For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2019
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of Physicsid |
ujp2-article-2019525 |
---|---|
record_format |
ojs |
spelling |
ujp2-article-20195252019-12-20T15:19:59Z Categories: Between Cubes and Globes. Sketch I Категорії: між кубічними та сферичними Bespalov, Y. category theory - For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into a product of two wide subcategories ♦P+ of faces and ♦P- of degenerations. One can imagine a degeneration from I to J ⊂ I as a projection of an abstract polytope PI to the subspace spanned by J. Morphisms in ♦P+ with fixed target I are identified with faces of PI . The composition in ♦P admits the natural geometric interpretation. On the category ♦I of presheaves on ♦I , we construct a monad of free category in two steps: for a terminal presheaf, the free category is obtained via a generalized nerve construction; in the general case, the cells of a nerve are colored by elements of the initial presheaf. Strict P-fold categories are defined as algebras over this monad. All constructions are functorial in P. The usual theory of globular and cubical higher categories can be translated in a natural way into our general context. Вивчаються багатовимiрнi категорiї, форма клiтин яких залежить вiд частково-впорядкованої множини. ♦ Publishing house "Academperiodika" 2019-12-09 Article Article Original Research Article (peer-reviewed) Оригінальна дослідницька стаття (з незалежним рецензуванням) application/pdf https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525 10.15407/ujpe64.12.1125 Ukrainian Journal of Physics; Vol. 64 No. 12 (2019); 1125 Український фізичний журнал; Том 64 № 12 (2019); 1125 2071-0194 2071-0186 10.15407/ujpe64.12 en https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525/1523 Copyright (c) 2019 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine |
institution |
Ukrainian Journal of Physics |
collection |
OJS |
language |
English |
topic |
category theory - |
spellingShingle |
category theory - Bespalov, Y. Категорії: між кубічними та сферичними |
topic_facet |
category theory - |
format |
Article |
author |
Bespalov, Y. |
author_facet |
Bespalov, Y. |
author_sort |
Bespalov, Y. |
title |
Категорії: між кубічними та сферичними |
title_short |
Категорії: між кубічними та сферичними |
title_full |
Категорії: між кубічними та сферичними |
title_fullStr |
Категорії: між кубічними та сферичними |
title_full_unstemmed |
Категорії: між кубічними та сферичними |
title_sort |
категорії: між кубічними та сферичними |
title_alt |
Categories: Between Cubes and Globes. Sketch I |
description |
For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into a product of two wide subcategories ♦P+ of faces and ♦P- of degenerations. One can imagine a degeneration from I to J ⊂ I as a projection of an abstract polytope PI to the subspace spanned by J. Morphisms in ♦P+ with fixed target I are identified with faces of PI . The composition in ♦P admits the natural geometric interpretation. On the category ♦I of presheaves on ♦I , we construct a monad of free category in two steps: for a terminal presheaf, the free category is obtained via a generalized nerve construction; in the general case, the cells of a nerve are colored by elements of the initial presheaf. Strict P-fold categories are defined as algebras over this monad. All constructions are functorial in P. The usual theory of globular and cubical higher categories can be translated in a natural way into our general context. |
publisher |
Publishing house "Academperiodika" |
publishDate |
2019 |
url |
https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525 |
work_keys_str_mv |
AT bespalovy categoriesbetweencubesandglobessketchi AT bespalovy kategoríímížkubíčnimitasferičnimi |
first_indexed |
2023-03-24T08:58:20Z |
last_indexed |
2023-03-24T08:58:20Z |
_version_ |
1795757694081040384 |