Категорії: між кубічними та сферичними

For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Bespalov, Y.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2019
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
id ujp2-article-2019525
record_format ojs
spelling ujp2-article-20195252019-12-20T15:19:59Z Categories: Between Cubes and Globes. Sketch I Категорії: між кубічними та сферичними Bespalov, Y. category theory - For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into a product of two wide subcategories ♦P+ of faces and ♦P- of degenerations. One can imagine a degeneration from I to J ⊂ I as a projection of an abstract polytope PI to the subspace spanned by J. Morphisms in ♦P+ with fixed target I are identified with faces of PI . The composition in ♦P admits the natural geometric interpretation. On the category ♦I of presheaves on ♦I , we construct a monad of free category in two steps: for a terminal presheaf, the free category is obtained via a generalized nerve construction; in the general case, the cells of a nerve are colored by elements of the initial presheaf. Strict P-fold categories are defined as algebras over this monad. All constructions are functorial in P. The usual theory of globular and cubical higher categories can be translated in a natural way into our general context. Вивчаються багатовимiрнi категорiї, форма клiтин яких залежить вiд частково-впорядкованої множини. ♦ Publishing house "Academperiodika" 2019-12-09 Article Article Original Research Article (peer-reviewed) Оригінальна дослідницька стаття (з незалежним рецензуванням) application/pdf https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525 10.15407/ujpe64.12.1125 Ukrainian Journal of Physics; Vol. 64 No. 12 (2019); 1125 Український фізичний журнал; Том 64 № 12 (2019); 1125 2071-0194 2071-0186 10.15407/ujpe64.12 en https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525/1523 Copyright (c) 2019 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
institution Ukrainian Journal of Physics
collection OJS
language English
topic category theory
-
spellingShingle category theory
-
Bespalov, Y.
Категорії: між кубічними та сферичними
topic_facet category theory
-
format Article
author Bespalov, Y.
author_facet Bespalov, Y.
author_sort Bespalov, Y.
title Категорії: між кубічними та сферичними
title_short Категорії: між кубічними та сферичними
title_full Категорії: між кубічними та сферичними
title_fullStr Категорії: між кубічними та сферичними
title_full_unstemmed Категорії: між кубічними та сферичними
title_sort категорії: між кубічними та сферичними
title_alt Categories: Between Cubes and Globes. Sketch I
description For a finite partially ordered set I, we define an abstract polytope PI which is a cube or a globe in the cases of discrete or linear poset, respectively. For a poset P, we have built a small category ♦P with finite lower subsets in P as objects. This category ♦P = ♦P+♦P- is factorized into a product of two wide subcategories ♦P+ of faces and ♦P- of degenerations. One can imagine a degeneration from I to J ⊂ I as a projection of an abstract polytope PI to the subspace spanned by J. Morphisms in ♦P+ with fixed target I are identified with faces of PI . The composition in ♦P admits the natural geometric interpretation. On the category ♦I of presheaves on ♦I , we construct a monad of free category in two steps: for a terminal presheaf, the free category is obtained via a generalized nerve construction; in the general case, the cells of a nerve are colored by elements of the initial presheaf. Strict P-fold categories are defined as algebras over this monad. All constructions are functorial in P. The usual theory of globular and cubical higher categories can be translated in a natural way into our general context.
publisher Publishing house "Academperiodika"
publishDate 2019
url https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019525
work_keys_str_mv AT bespalovy categoriesbetweencubesandglobessketchi
AT bespalovy kategoríímížkubíčnimitasferičnimi
first_indexed 2023-03-24T08:58:20Z
last_indexed 2023-03-24T08:58:20Z
_version_ 1795757694081040384