Концентраційна залежність розмірів макромолекул альбумінів у водних розчинах

On the basis of experimental data for the shear viscosity in the aqueous solutions of ovine serum albumin and using the cellular model describing the viscosity in aqueous solutions, the concentration dependences of the effective radius of ovine serum albumin macromolecules in the aqueous solutions w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Bulavin, L. A., Khorolskyi, O. V.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Publishing house "Academperiodika" 2020
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2020135
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:On the basis of experimental data for the shear viscosity in the aqueous solutions of ovine serum albumin and using the cellular model describing the viscosity in aqueous solutions, the concentration dependences of the effective radius of ovine serum albumin macromolecules in the aqueous solutions within a concentration interval of 3.65–25.8 wt% and a temperature interval of 278–318 K at the constant pH = 7.05 are calculated. The concentration and temperature dependences of the effective radii of ovine, bovine, and human serum albumin macromolecules are compared. It is shown that they are partially similar for the solutions of ovine and human serum albumins within concentration intervals of 0.12–0.49 vol% and 0.18–0.48 vol%, respectively, provided an identical acid-base balance (pH) in those solutions. The following conclusions are drawn: (i) the concentration dependences of the effective radii of structurally similar macromolecules of various albumins are similar, but provided an identical pH, and (ii) the dependence of the volume concentration of aqueous albumin solutions on the temperature at the constant radius of a macromolecule confirms the hypothesis about the existence of a dynamic phase transition in aqueous solutions at a temperature of 42 ∘C, at which the thermal motion of water molecules significantly changes.