Твірна функція моментів для статистики вихідної активності інтегруючого нейрона з втратами
The statistics of the output activity of a neuron during its stimulation by the stream of input impulses that forms the stochastic Poisson process is studied. The leaky integrate-and-fire neuron is considered as a neuron model. A new representation of the probability distribution function of the out...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English Ukrainian |
Опубліковано: |
Publishing house "Academperiodika"
2021
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2020156 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | The statistics of the output activity of a neuron during its stimulation by the stream of input impulses that forms the stochastic Poisson process is studied. The leaky integrate-and-fire neuron is considered as a neuron model. A new representation of the probability distribution function of the output interspike interval durations is found. Based on it, the moment-generating function of the probability distribution is calculated explicitly. The latter, according to the Curtiss theorem, completely determines the distribution itself. In particular, explicit expressions are derived from the moment-generating function for the moments of all orders. The first moment coincides with the one found earlier. Formulas for the second and third moments have been checked numerically by direct modeling of the stochastic dynamics of a neuron with specific physical parameters. |
---|