Зв’язана нелінійна динаміка тримодової інтеґровної системи на регулярному ланцюжку

The article suggests the nonlinear lattice system of three dynamical subsystems coupled both in their potential and kinetic parts. Due to its essentially multicomponent structure the system is capable to model nonlinear dynamical excitations on regular quasi-one-dimensional lattices of various physi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Vakhnenko, O.O.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2021
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2020217
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:The article suggests the nonlinear lattice system of three dynamical subsystems coupled both in their potential and kinetic parts. Due to its essentially multicomponent structure the system is capable to model nonlinear dynamical excitations on regular quasi-one-dimensional lattices of various physical origins. The system admits a clear Hamiltonian formulation with the standard Poisson structure. The alternative Lagrangian formulation of system’s dynamics is also presented. The set of dynamical equations is integrable in the Lax sense, inasmuch as it possesses a zero-curvature representation. Though the relevant auxiliary linear problem involves a spectral third-order operator, we have managed to develop an appropriate two-fold Darboux–Backlund dressing technique allowing one to generate the nontrivial crop solution embracing all three coupled subsystems in a rather unusual way.