Наближення молекулярного поля в теорії феромагнітного фазового переходу в розбавлених магнітних напівпровідниках
In this pedagogical paper, the comparative analysis of two common approaches describing the ferromagnetic phase transition in diluted magnetic semiconductors (DMS) is expounded in terms of the Weiss field approximation. Assuming a finite spin polarization of the magnetic ions, the treatment of carri...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English Ukrainian |
Опубліковано: |
Publishing house "Academperiodika"
2021
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2020300 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | In this pedagogical paper, the comparative analysis of two common approaches describing the ferromagnetic phase transition in diluted magnetic semiconductors (DMS) is expounded in terms of the Weiss field approximation. Assuming a finite spin polarization of the magnetic ions, the treatment of carrier-ion exchange interaction in the first order evokes a homogeneous Weiss molecular field that polarizes the spins of free carriers. In turn, this spin polarization of the free carriers exerts the effective field that may stabilize the DMS spin polarization belowa critical temperature TC. The treatment of such self-consistent spontaneous DMS magnetization can be done in terms of the spin-spin interaction independent of the inter-ion distance and the infinitesimal in thermodynamic limit. On the other hand, by additionally accounting for the second-order effects of the carrier-ion exchange interaction, we can treat a Weiss field in terms of the Ruderman–Kittel–Kasuya–Yosida indirect spin-spin interaction, which oscillates and does not disappear at finite inter-ion distances in the case of a finite concentration of carriers. These both approaches result in the same Curie temperature TC provided a non-correlated homogeneous random distribution of the localized spin moments over the sample volume. We discuss the origin of such coincidence and show when this is not a case in other more realistic models of the conducting DMSs. |
---|