Релаксація просторово однорідної функції розподілу за умови неоднорідного розподілу енергії

Relaxation processes in a model system are studied with the use of a kinetic equation. In a first approximation with respect to the concentration, an expression for the temperature as a function of the time has been derived in the spatially uniform case and for the Maxwell distribution function with...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Sizhuk, A.S., Yezhov, S.M.
Format: Article
Language:Ukrainian
English
Published: Publishing house "Academperiodika" 2012
Subjects:
-
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021134
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Description
Summary:Relaxation processes in a model system are studied with the use of a kinetic equation. In a first approximation with respect to the concentration, an expression for the temperature as a function of the time has been derived in the spatially uniform case and for the Maxwell distribution function with a non-uniform energy distribution over the rotational and translational degrees of freedom. The relaxation time is shown to decrease, as the difference between the initial and equilibrium values of average translational kinetic energy diminishes and the equilibrium temperature grows. The time of the average  ranslational (rotational) energy relaxation to the equilibrium value is found to be reciprocal to the square root of the equilibrium temperature and to the particle concentration. For the intrinsic moment of inertia, which is equal to the moment of inertia of a spherical particle with certain effective radius, therelaxation time is minimal. Relaxation times for some parameters of particles in the system concerned are calculated.