Узагальнені деформовані осцилятори в рамках об’єднаної (q, α, β, γ, ν)-деформації і їх осциляторні алгебри
The aim of this paper is to review our results on the description of multiparameter deformed oscillators and their oscillator algebras. We define generalized (q; α, β, γ, ν)-deformed oscillator algebras and study their irreducible representations. The Arik–Coon oscillator with the main relation aa+...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2012
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021277 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | The aim of this paper is to review our results on the description of multiparameter deformed oscillators and their oscillator algebras. We define generalized (q; α, β, γ, ν)-deformed oscillator algebras and study their irreducible representations. The Arik–Coon oscillator with the main relation aa+ – qa+a = 1, where q >1, is embedded in this framework. We have found the connection of this oscillator with the Askey q–1-Hermite polynomials. We construct a family of generalized coherent states associated with these polynomials and give their explicit expression in terms of standard special functions. By means of the solution of the appropriate classical Stieltjes moment problem, we prove the property of (over)completeness of these states. |
---|