Категорія дерев Вілєнкіна−Кузнєцова−Смородінського−Смірнова

First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Moskaliuk, S.S., Moskaliuk, N.M.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2012
Теми:
-
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021293
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs Γ reflecting the combinatorics of operadic data and axioms. From this viewpoint, the specific operad is a functor Γ → C. Second, our aim is the construction of the category of Vilenkin–Kuznetsov–Smorodinsky–Smirnov (VKSS) trees, which contains VKSS-trees as objects and morphisms generated by a rotation of the n-dimensional space and transforming functions of VKSS-trees.