2025-02-22T09:55:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2021293%22&qt=morelikethis&rows=5
2025-02-22T09:55:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2021293%22&qt=morelikethis&rows=5
2025-02-22T09:55:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T09:55:28-05:00 DEBUG: Deserialized SOLR response

Категорія дерев Вілєнкіна−Кузнєцова−Смородінського−Смірнова

First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs...

Full description

Saved in:
Bibliographic Details
Main Authors: Moskaliuk, S.S., Moskaliuk, N.M.
Format: Article
Language:English
Published: Publishing house "Academperiodika" 2012
Subjects:
-
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021293
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs Γ reflecting the combinatorics of operadic data and axioms. From this viewpoint, the specific operad is a functor Γ → C. Second, our aim is the construction of the category of Vilenkin–Kuznetsov–Smorodinsky–Smirnov (VKSS) trees, which contains VKSS-trees as objects and morphisms generated by a rotation of the n-dimensional space and transforming functions of VKSS-trees.