Категорія дерев Вілєнкіна−Кузнєцова−Смородінського−Смірнова

First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Moskaliuk, S.S., Moskaliuk, N.M.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2012
Schlagworte:
-
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021293
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs Γ reflecting the combinatorics of operadic data and axioms. From this viewpoint, the specific operad is a functor Γ → C. Second, our aim is the construction of the category of Vilenkin–Kuznetsov–Smorodinsky–Smirnov (VKSS) trees, which contains VKSS-trees as objects and morphisms generated by a rotation of the n-dimensional space and transforming functions of VKSS-trees.