Про торичні вузли T(n, 4) і поліноми Чебишова
The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2012
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021294 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | The Alexander polynomials ∆n,3(t) and ∆n,4(t) are presented as a sum of the Alexander polynomials ∆k,2(t). These polynomials are also expressed in the form of a sum of Chebyshev polynomials of the second kind. These expansions allow one to introduce the "coordinates" in corresponding bases, which are proposed to be the numerical invariants characterizing links and knots. |
---|